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1. INTRODUCTION 

The purpose of this research is to develop an adaptive torque controller to im­

plement the Environmental Protection Agency (EPA) Federal Transient Test Cycle. 

The EPA specifies that an engine must be operated over this test cycle while its ex­

haust emissions are being measured and compared to regulations [49]. The test cycle 

consists of a precise series of engine speed and torque values at which the engine must 

be operated according to a time schedule. The cycle contains periods of rapid accel­

eration and deceleration, idling, and steady cruising to simulate the actual conditions 

that a diesel engine will encounter in an over-the-road truck. During the 20-minute 

test, under both cold and hot start operation, the engine and dynamometer pair 

should be able to follow reference torque and speed trajectories within specified tol­

erances. The ability to control speed and torque independently is also advantageous 

for carrying out work on engine mapping where both speed and torque need to be 

held constant while varying other parameters such as air-to-fuel ratio. 

Controllers with fixed parameters (nonadaptive), designed using classical con­

trol system design methods, have been shown to be adequate for transient test cycle 

implementation [1, 2, 3, 4]. Although parameters of the describing equations of the 

torque control system may vary over the operating range, non-adaptive controllers 

can cope well with considerable variations in the system dynamics. However, a con­
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stant parameter controller designed for a particular system may not give satisfactory 

performance when alterations are made in system components such as replacing an 

all-speed governor with a min-max governor, removing the turbocharger, or changing 

the amount of filtering in the torque and speed measurement lines. Moreover, in 

test laboratories where different engines with various different components need to 

be run over the transient test cycle, an adaptive control algorithm can be a require­

ment. Classical, constant parameter controllers require off-line system identification 

and controller design for each specific configuration. This can be very time consum­

ing. An adaptive control algorithm would automatically adjust controller parameters 

based on input-output information. It will be shown in Chapter 6 that when a filter 

in the torque measurement line was removed in a specific engine and dynamometer 

setup, the constant parameter controller did not give a satisfactory response - actu­

ally led to an unstable closed-loop operation - while the self-tuning adaptive control 

produced valid transient test cycles under the EPA specifications. 

The major objectives of this research are: 

1. To investigate the feasibility of adaptive torque control for a diesel engine for 

implementation of the EPA Federal Transient Test Cycle. 

2. To compare the performance of conventional and adaptive torque controllers. 

3. To point out the implementation problems of using digital adaptive torque 

control for a diesel engine. 

In this research, three different adaptive control strategies were tested and com­

pared to each other. In the first approach, the complete system identification, pa­

rameter estimation, and controller design were carried out on-line during a brief test 
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period prior to the transient test cycle. A one-shot system identification and param­

eter estimation was combined with a one-shot controller design algorithm. During 

the test cycle, the controller parameters were kept constant. Although there was 

no parameter estimation and adaptation during the 20 minute transient test cycle, 

this was still considered an adaptive algorithm since no prior knowledge about the 

system was assumed, and the determination of the system model, time delay, model 

parameters, and controller and feedforward compensation designs were carried out 

on-line. 

The second approach is similar to the first one, but includes a gain-scheduling 

control. For different operating ranges, the selected model parameters and corre­

sponding controller parameters were found on-line during a short period prior to the 

test cycle employing multiple one-shot parameter identification and controller design. 

During the test cycle, the controller parameters become a function of the operating 

conditions. Again, as in the first approach, no prior knowledge about the system is 

needed. 

The third method is different from the first two and employs continuous param­

eter estimation and controller parameter update during the transient test cycle. This 

is the traditional understanding of an adaptive controller. Prior knowledge about 

the system, however, was required for this approach. The time-delay, system model, 

and estimates of the model parameters had to be determined off-line prior to the test 

cycle. The purpose of this algorithm was to track time-varying parameters of the 

system due to operating conditions, and hence obtain better tracking of the reference 

speed and torque trajectories. 

This dissertation is organized as follows: Chapter 2 gives a literature review on 
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engine speed/torque control design for transient test cycles and on adaptive control 

techniques. Complete system modeling is discussed in Chapter 3. The assumptions 

and possible simplifications on the overall naodel are reviewed. The specifications of 

the system under consideration are also given. Chapter 4 gives the details of the 

Poisson Moment Functional (PMF) parameter identification algorithm. The PMF 

method is a continuous-time parameter identification technique, and it has some fea­

tures that make it superior to discrete-time parameter identification techniques. A 

detailed comparison of the PMF method to discrete-time methods is given. Appli­

cation of the PMF method to the adaptive control of the throttle-torque problem is 

also discussed in this chapter. Chapter 5 explains the controller design in each of the 

three adaptive control strategies. Due to the non-negligible time delay present in the 

system, a Smith predictor schema is employed. Inclusion of the Smith predictor in 

an adaptive control algorithm can provide additional flexibility which enlarges the 

application areas to time delay systems. Implementation issues, controller software 

development, design of a feedforward compensator to overcome the load disturbances, 

and development of a new pole-zero assignment algorithm to ensure stable closed-

loop operation are also discussed in Chapter 5. Chapter 6 gives the performance of 

the controllers in actual transient test cycles. Comparisons are made between the 

different adaptive control strategies and to fixed parameter controllers. Application 

of the designed algorithm to other systems is also discussed. Chapter 7 summarizes 

the conclusions of this study. 



www.manaraa.com

5 

2. LITERATURE REVIEW 

2.1 Engine Modeling 

There are a large number of studies that discuss the dynamic modeling and 

control of automotive engines [5-15]. Morris et al. [5] reported a mathematical 

model for the throttle position - engine torque system. An adaptive identification 

algorithm was employed to find the parameters of the model for their specific spark-

ignition engine. However, they did not deal with the problem of engine control, 

which Powell [6] addressed with his dynamic engine model for control applications. 

A fuel to air ratio, spark advance, and exhaust gas recirculation control algorithm 

was developed to allow multivariable engine control based on his dynamic model. 

The effect of time delay on the overall system response was also included in his 

study. Tsai and Goyal [7] developed a dynamic turbocharged diesel engine model with 

simplified linearized equations to describe the governor, the combustion process, and 

the engine. They also developed a fourth-order linearized model with a time delay to 

represent the transfer function of the throttle-speed system. Blaney [8] explained the 

design steps of a digital speed control system. He pointed out that the time varying 

coefficients of the system were a major factor limiting the use of conventional digital 

speed control algorithms. He concluded that adaptive control could provide a very 

practical algorithm for cruise control applications in vehicles. Sobolak [9] summarized 
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the studies on the Ford vehicle speed control system. He pointed out the high non-

linearity of the system, and concluded that classical feedback control theory has 

very little value for engine speed control and recommended adaptive algorithms for 

modeling and control of the system. Kamei et al. [10] and Takahashi et al. [11] 

explained linear quadratic (LQ) controller design for idle speed control. They also 

mentioned the varying dynamics of the engine at other than idle speed operation. 

Although there are a large number of studies on engine speed control (or cruise 

control), little work has been reported on the simultaneous torque and speed control 

of engines for transient test cycles. Due to increasingly stringent emissions legisla­

tion and demands for improved fuel economy and driveability, there is a growing 

need for accurate and repeatable transient control of engines on testbeds. Wellstead 

and Zanker [16] applied a self-tuning adaptive control concept (the detuned mini­

mum variance algorithm) to a four stroke turbocharged diesel engine coupled to a 

dynamometer for engine speed control. They considered loads generated by a dy­

namometer as disturbances in the speed control loop, however, they did not make any 

attempt to identify the interactive disturbance effects on the system or to compen­

sate for them by a feedforward controller for better performance. They also did not 

address simultaneous torque and speed control as required for transient test cycles. 

Koustas and Watson [2] implemented a digital testbed control system consisting of 

combined PID and time optimal throttle and torque controllers. They obtained good 

results on simultaneous control of torque and speed. However, since their system 

used an eddy-current dynamometer, which can not reproduce the motored parts of 

the cycle, they could not implement the entire transient test, rather only 96 seconds 

of the cycle was implemented. Noble et al. [3] described the application of generalized 
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predictive control (GPC) to transient control of speed and torque. They used off-line 

system identification algorithms coupled with the GPC design algorithm to tune the 

system for best performance for each installation. They also could not implement the 

entire transient test cycle due to the use af an eddy-current dynamometer. Tuken et 

al. [1] described the design steps of a digital torque controller capable of following 

the EPA transient test cycle. This controller was developed for a turbocharged diesel 

engine and a direct current dynamorheter. A pole assignment algorithm coupled with 

a Smith Predictor to deal with a time delay and a feedforward compensator was used 

for better disturbance rejection. Test results showed that the controller consistently 

satisfied the EPA regulations. Brown and Thompson [4] described a method of con­

trolling both speed and torque independently by designing a pre-compensator that 

effectively decouples the engine and dynamometer system. 

All the above studies showed that for particular engine and dynamometer pairs, 

off-line system identification methods coupled with conventional control laws can 

give satisfactory transient performance. Classical non-adaptive closed-loop control 

systems can cope well with parameter variations, so variation of the open-loop sys­

tem parameters is not a justification for the use of adaptive control. However, when 

flexibility for testing different engines is important, then application of adaptive con­

trol to simultaneous speed and torque control of engines could provide an impor­

tant advantage. This is also important in research laboratories where the effect of 

different engine components and parameters (e.g. fuel to air ratio, governor type, 

turbocharger) are tested for emissions analyses. 
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2.2 Adaptive Control 

The three basic operations common to most adaptive control systems are the 

following: 

1. it must identify the process, 

2. it must compare present system performance with the desired or optimum per­

formance and make a decision to adapt the system so as to tend toward optimum 

performance, and 

3. it must initiate a proper modification so as to drive the system toward the 

optimum. 

Depending on how these functions are brought about, different types of adaptive 

controllers can be proposed. 

There are a large number of references on system identification and adaptive 

control. Discrete-time system and parameter identification techniques are best ex­

plained by Norton [17], Sodestrom and Stoica [18], Ljunj [19], Ljung and Sodestrom 

[20], Eykhoff [21], Hsia [22], and Goodwin and Payne [23]. Recursive parameter 

estimation schemes best suited for adaptive control such as recursive least squares, 

extended least squares, and maximum likelihood identification algorithms and their 

variations to accommodate stochastic systems are covered in great detail in the above 

references. Some other excellent references on discrete-time parameter identification 

are also listed in the bibliography [24-29]. 

S aha and Rao [30] give a detailed treatment of the Poisson Moment Functional 

(PMF) approach for identification of continuous dynamic systems. They list im­

munity to noise, ability to estimate time delay, and applicability to non-linear and 
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time-varying systems as some of the desirable features of the PMF algorithm. Unbe-

hauen and Rao [31] deal with recent trends in continuous model identification. The 

PMF method, the orthogonal function method, and the method of linear filters are 

explained. Recursive estimation of continuous-time model parameters from discrete 

measurements for adaptive control purposes is also treated. They state that ease 

of implementation, good noise rejection capability, and computational simplicity are 

the main advantages of the PMF method over these other continuous-time parameter 

identification algorithms. 

The majority of the reported adaptive control applications employ discrete-time 

parameter estimation algorithms. This is primarily due to the fact that digital com­

puters are involved in the implementation of the algorithms. However it will be 

shown here that estimating continuous-time system parameters from discrete sets of 

measurements and then converting the continuous-time model to its discrete-time 

counterpart can have significant advantages over estimating discrete-time model pa­

rameters directly. It will be shown that this is reasonable since the plants are de­

scribed by continuous-time equations which are close to the real world, and digital 

computers operate in a discrete fashion. 

An excellent review of the literature on adaptive control up to 1987 is given by 

Chalam [32]. Although there are vast number of papers on adaptive control, most of 

the findings are summarized in various fine books [32-46]. There are two principal 

approaches to adaptive control, mainly model reference adaptive control (MRAC), 

and the self-tuning regulator (STR). In MRAC the aim is to make the output of 

an unknown plant approach asymptotically the output of a given reference model. 

The main advantages of this method are ease of implementation and a high speed of 



www.manaraa.com

10 

adaptation since there is no need for identification of the plant dynamic performance. 

However, it is difficult to analyze the convergence and stability properties of MRAC 

systems. Moreover MRAC systems are mostly applied to deterministic systems. An 

excellent discussion of model reference adaptive control as well as parameter and 

state estimation using model reference adaptive methods is provided in Landau [3.3]. 

In contrast to MRAC systems, the estimation of unknown parameters is sepa­

rated from the design of the controller in STR systems. Applicability to stochastic 

and time delay systems, and ease of stability and convergence analyses are the main 

advantages of the STR method when compared to the MRAC method. Harris and 

Billings [34] have reviewed many aspects of self-tuning adaptive control explored in 

various papers. Additional self-tuning design methods and implementation issues are 

discussed by RofFel et al. [35]. 

In this research the self-tuning approach to adaptive control was selected. Al­

though self-tuning and model reference adaptive control are based on different de­

sign approaches, the equivalence between them has been demonstrated in several 

studies [41, 42]. Among the different controller design approaches in self tuning 

control, the linear-quadratic-gaussian self-tuning regulator, the minimum variance 

controller, the pole-zero placement technique, and self-tuning control to give the pro-

portional+integral+derivative (PID) modes are some of the most widely used design 

methods. Of these, the pole-zero placement technique was selected in this study. 

This method involves the placement of closed-loop poles and zeros at the prescribed 

locations which define a required transient response. Due to the nature of the 20-

minute EPA transient test cycle, the engine speed and torque should follow a required 

transient response. The pole-zero placement algorithm is well suited for this applica­
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tion. Robustness, applicability to non-minimum phase plants in which time delay or 

model order is not known, and ability to regulate systems with varying time delays 

are some of the desirable features of the pole-zero placement technique. Astrom and 

Wittenmark [38, 43] give a design procedure for the pole-zero placement method. The 

minimum variance STR, in which the objective is the minimization of the variance 

of the process output, is not suitable for engine torque control applications since a 

minimum phase plant assumption is made in the development of this method. The 

linear-quadratic-gaussian STR demands the most computation, otherwise it carries 

the same desired features of the pole-zero placement algorithm. 

There are no published studies available on adaptive torque control of either 

gasoline or diesel engines for transient test cycles. Also, there are no studies avail­

able on application of continuous-time parameter identification algorithms for use in 

adaptive control systems. This research hopefully will fill these gaps, and provide fur­

ther application areas for adaptive control and continuous-time model and parameter 

estimators. 
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3. SYSTEM MODELING 

The system to be modeled is an engine and dynamometer pair in the Inter­

nal Combustion Engine Laboratory of Iowa State University. This engine and dy­

namometer pair was also the source of all the experimental data discussed in this 

dissertation. Figure 3.1 shows the experimental apparatus. A John Deere 4276T tur-

bocharged diesel engine was coupled to a General Electric TLC-2544 DC electric dy­

namometer. Speed control was provided by a General Electric Siltron Dynamometer 

Controller. A Zenith Corporation Z-386 computer with an Analog Devices RTI-820 

data acquisition module was used to supply reference speed and torque trajectories 

and to accomplish the closed-loop torque control. A PP-125 step-motor driven linear 

actuator produced by Jasta, Inc. was used to set the governor speed lever position. 

Engine, dynamometer, and actuator specifications are given in Table 3.1. 

Figure 3.2 shows the block diagram representation of the throttle-torque open-

loop system. Through RS-232 serial line communication, the computer supplies input 

commands to the step-motor driven electromechanical actuator which sets the throt­

tle position. Actuator dynamics are also included in the model of the system. A 

governor-equipped injection pump unit sets the fuel rate that goes to the cylinders; 

it does so by observing speed control lever position and the speed of the engine. The 

output of the combustion process is the engine torque. Subtraction of load torque 
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Engine 
Governor 
Lever 

Actuator 

Load Cell 

ISkSS C Dyna"iometer =0=0=: 

Step-Driven 
Motor 

Zenith.Z-386 
Computer 

General Electric 
Siltron Controller 

Figure 3.1: Experimental Apparatus for the Torque-Speed Control Loops 
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Table 3.1: Engine, dynamometer, step-motor and actuator specifications 

Engine Specifications 

Bore 
Stroke 
Number of cylinders 
Total displacement 
Compression ratio 
Maximum torque 
Maximum power 

4.19 in. (106.5 mm) 
5.0 zn. (127.0 mm) 

4 

276.0 (4525.2 cm^) 
16.8:1 

230 ft — lbs @ 1500 rpm (310.5 N — m @ 1500 rpm) 
7 8  B H P  ( 5 8 . 2  k W )  

Dynamometer Specifications 

Excitation Voltage 
Maximum current 
Maximum absorbed power 
Maximum delivered power 

250.0 V 
410.0 A 

1 5 0  B H P  ( 1 1 1 . 8  k W )  
m  B H P  ( 8 9 . 5  k W )  

Step-Motor and Actuator Specifications 

Maximum thrust 125 /6 (57.0 kg) 
Maximum linear velocity 15 in.jsec. (38.1 cmjsec) 
Stroke . 3 in. (7.62 cm) 
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from engine torque gives the net torque of the system. 

To obtain a mathematical model for the throttle-torque system, the model struc­

tures of individual blocks in Figure 3.2 were first determined. By using the input and 

output data obtained from open-loop step response tests, possible simplifications in 

the overall system model were investigated. This gave rise to a lower order model for 

the system that was more suitable for identification and adaptive controller design. 

3.1 Electromechanical Actuator Dynamics 

A permanent magnet step-motor-driven linear actuator was used to set the throt­

tle position. 

The step-motor has its own microprocessor to convert input position commands 

(serial line commands through a RS-232 interface) to voltages for the four phases of 

the step-motor. The microprocessor and step-motor-driven unit is characterized by 

a time delay transfer function. 

Kuo [47] detailed the dynamic modeling of a permanent magnet step-motor. 

He developed a third-order non-linear dynamic model to describe the input-output 

relation of the step-motor. However, after linearization, a linear third-order dynamic 

model can adequately approximate the step-motor performance. 

3.2 Governor Model 

An injection-pump-mounted mechanical, hydraulic governor was employed, as is 

typical of diesel engines for industrial and agricultural use. A schematic representa­

tion of the governor unit is shown in Figure 3.3. 

In the mechanical part of the governor, the centrifugal force on weights rotating 
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about a horizontal axis driven by the engine is balanced against a spring. Any 

change in the speed of rotation shifts the balance position of the mechanism and the 

movement is transmitted by a linkage to the metering valve of the hydraulic pump 

unit. 

The hydraulic part of the governor includes a transfer pump, metering valve, 

injection pump plungers, and the distributor. Fuel is fed into the injection pump by 

the transfer pump. The delivery of the transfer pump is proportional to engine speed, 

and this is converted into a pressure proportional to engine speed by a regulating 

valve. This pressure is then applied to a metering valve plunger. Metered fuel is 

proportional to the output rod position of the mechanical governor. This metered 

fuel is then fed equally to the engine cylinders by the injection pump plunger and a 

distributor unit. 

The mathematical model for the governor is shown below. 

(a) Mechanical part 

Summing the forces along the axis of rotation gives the following equation. 

o X c/iC 
m u )  r  =  m e — ^  +  ( 3 —  +  K x  +  F; +  P A  (.3.1) 

dt^ dt 

Fi = Kixa (3.2) 

P  =  K t u j  (3.3) 

(b) Hydraulic part 

The flow rate of fuel that goes to the engine is directly proportional to the 

metering valve position as shown in the following equation. 

q  =  K m X  (3.4) 
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where the variables in equations 3.1 - 3.4 are defined as follows. 

m = Mass of flyweights 

w — Engine speed 

r = Radius of the flyweight from the axis of rotation 

m e  = Total effective rotating mass 

0 = Viscous friction coefficient of the moving parts 

K = Spring stiffness 

= Load force due to throttle rack 

P = Output pressure of transfer pump 

A = Metering-valve piston area 

•Ca = Throttle position 

X 
= Metering valve position 

Ç = Fuel rate 

K m  = Metering valve constant 

K t  = Transfer pump constant 

K l  — Constant due to geometry of throttle rack 

Thus, a second order non-linear dynamic model represents the relationship between 

fuel rack position, engine speed and the fuel rate that goes to the engine. 

3.3 Engine Combustion System Model 

A significant feature of a diesel engine, from a control point of view, is the 

discontinuous manner in which power is produced by the sequential firing of cylinders. 
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It means there is a time delay between the action of the governor in demanding a 

change in fueling rate and the response of the engine to that change. The effective 

firing delay has been found, in other studies, to be the actual time between consecutive 

pistons arriving at the injection point plus approximately a quarter of a revolution 

of the crankshaft [48]. The effective firing delay is therefore approximately; 

h = Number of strokes per cycle 

w = Speed in rev/min 

e = Number of cylinders 

Tj: = Firing delay in seconds 

The second term in the firing delay equation comes from the fact that the engine 

crankshaft does not rotate at a uniform speed but rather experiences a cyclic variation 

in torque, which gives rise to a cyclic variation in speed. 

The transfer function for the engine combustion system can be written in Laplace 

variables as: 

where Ke is a constant. In this model, the engine comprises a combustion system 

w h i c h  p r o d u c e s  a  t o r q u e ,  T ^ ,  a s  a  f u n c t i o n  o f  t h e  f u e l  f l o w  r a t e ,  q .  

(3.5) 

where 

g(a) 
(3.6) 

3.4 Engine/Dynamometer Inertia 

Engine torque, T^, acts against the load torque, Tj^, and any difference between 

and Tj^ accelerates, or retards, the combined inertia J = -\- Jwhere is 
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the engine inertia including the flywheel and J [ )  i s  the dynamometer inertia. The 

sum of the torques will equal the engine acceleration. 

^ E - ' ^ L - ' ^ F  =  (3-7) 

where Tp is the friction torque and can be approximated as a function of speed, e.g. 

Tp = Bu>, and B is the friction torque/speed slope. Then Eq. 3.7 becomes: 

T E i t )  -  T ^ i t )  =  +  B u ; { t )  (.3.8) 

3.5 Model for the GE Speed Controller and Dynamometer 

Since no information was available on the GE Siltron Dynamometer Controller, 

a black-box approach is taken for load torque analysis. So load torque can be written 

as a function of reference speed and actual speed as seen in Figure 3.2. 

'^L = (3.9) 

3.6 Model for the Overall System 

In the EPA transient test cycle, the reference engine torque trajectory is given 

and the EPA specifies that this torque is to be measured at the engine's output 

shaft. This engine torque, however, is not available for direct measurement in the 

dynamometer facility used for this study, rather load torque is measured with a load 

cell located on the dynamometer. Two different approaches can be used to overcome 

this problem: 
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1. Engine torque can be estimated using an engine and dynamometer inertia 

model. Since both the engine and dynamometer inertia are known, engine 

torque can be obtained by measuring load torque and engine speed, and then 

applying Eq. 3.7. Estimated engine torque can then be used for the identifica­

tion of the throttle-engine torque model's parameters and as feedback for the 

engine torque control loop. However, this technique for estimation of engine 

torque requires differentiation of the speed signal. Due to possible noise in 

the speed measurement, it is not suitable for differentiation. Even assuming a 

perfect engine torque estimation, the fifth-order model for the throttle-speed-

engine torque system resulting from the analysis given earlier in this chapter 

may not be suitable for adaptive control purposes. Parameter estimation and 

adaptive controller design methods call for the simplest possible model for the 

system. Since most physical systems can be described by third order dynam­

ics, using higher order models can create problems in parameter identification 

and adaptive control algorithms as will be explained later. A system structure 

identification, which can be performed either on-line or off-line, through exper­

imental data, can be used in place of the fifth-order model to obtain a lower 

order model. 

2. Using reference speed and reference engine torque trajectories, a reference load 

torque trajectory can be created by using the known inertia of the system. This 

converts the engine torque control problem to a load torque control problem. 

Since the reference speed trajectory contains no noise, differentiation of the 

speed signals does not pose a problem. Due to the black-box approach followed 

in modeling the GE speed controller, we no longer know an exact model for 
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the throttle-speed-load torque system. However, as mentioned earlier, a system 

structure identification can be carried out through experimentation to find a 

suitable model for the system for controller design purposes. 

The second approach listed above was used in this research. Avoiding differ­

entiation of speed signals and allowing applicability to other systems were the two 

primary reasons behind the selection of this approach. Since actual engine speed, w, 

depends on reference speed, and throttle valve position, xa, the load torque 

given by Eq. 3.9 can be approximated as: 

Tl - (3.10) 

On-line or off-line process identification techniques can now be employed to find a 

model that fits the measured input-output data. 
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4. PARAMETER ESTIMATION 

On-line determination of process parameters is a key element in adaptive con­

trol. This chapter summarizes and compares some parameter estimation methods 

described in the literature. Parameter estimation algorithms can be arranged to give 

either discrete-time or continuous-time model parameters. Estimating continuous-

time model parameters is computationally more complicated. Section 4.1 reveals 

the basic differences of these two cases in the estimation algorithm. The three most 

commonly used continuous-time model estimation methods are summarized in Sec­

tion 4.1. Of these methods, the Poisson Moment Functional (PMF) is explained 

in more detail in Section 4.2. The PMF method was used in this study due to its 

superior "immunity to noise" feature. Section 4.3 compares the performance of the 

PMF continuous-time identification technique to discrete-time parameter identifica­

tion methods. It is shown in Section 4.3 that in the case of noisy measurements the 

PMF method has superior convergence properties. Section 4.4 deals with the appli­

cation of the PMF method to the throttle-torque system studied in this research. In 

Section 4.4, it is shown how the PMF algorithm is developed for each of the adaptive 

control strategies applied in this research. 
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4.1 Parameter Estimation in Continuous-Time and Discrete-Time 

Systems 

The process of parameter estimation consists of two stages. These are: 

1. The primary stage in which the system of parameter estimation equations is 

derived from the form of the dynamic model corresponding to the system to be 

identified. 

2. The secondary stage in which the parameters of the model are estimated within 

the framework of an estimation method. 

The secondary stage is independent of the original model form and depends only 

on the system of parameter estimation equations arising from it. The secondary stage 

can be applied with little modification for either continuous-time or discrete-time 

models. Thus, all methods developed for discrete models can be directly implemented 

in the case of continuous-time models. The major difference between continuous-time 

and discrete-time parameter identification lies in the primary stage. 

The primary stage is trivial in the case of discrete systems since the system 

of equations can be directly v.'ritten down from the discrete model of the dynamic 

system corresponding to the discrete points of available data. For example, consider 

a plant whose transfer function can be written in the z-domain as: 

_ bQZ^ + biz^ ^ + ... + bm 

U { z )  z ' " ' +  a n  

where m < n and n is the system order. The primary stage for this discrete-time 

system consists of converting the above transfer function description to a difference 
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equation representation as shown: 

y ( k )  -  - a i y { k  -  I )  -  a 2 y i k  -  2 )  -  . . .  -  a n y { k  -  n )  (4.2) 

+ 6Qîi(fc + 77T — n) + b-^u(^k + 771 — 71 — 1) + ... + b f j i U ^ k  — 7l) 

The primary stage in the continuous-time model needs special consideration. 

The problem arises from the derivative measurement. Algorithms involving direct 

generation of the time derivatives of process signals either physically or by compu­

tation are good only in deterministic situations or if the noise in the measurements 

is very low. For simplicity, consider the following single input - singleoutput (SISO) 

lumped linear continuous system: 

= ,4.3, 
4^ ^ ^  d f ^ - 3  i=0 j=0 

The above equation can be written as: 

n m 
= E (4-4) 

i=0 j=0 

where 5y^- and Suj are members of the output and input signal families, and a^-

and bj are the constant unknown parameters of the output and input sections of the 

process, respectively. Clearly, the primary stage in the continuous-time parameter 

estimation problem requires the measurement or computation of the Sy- and Suj 

terms. In actual practice it is neither possible to directly observe some elements of 

Sy^ and Suj, those involving derivative operations in particular, nor is it desirable 

to generate them directly from y{t) and u{t). However, if we perform a suitable 

linear dynamic operation on both sides of Eq. 4.4, transforming Sy^^ and Suj into 

well-behaved and measurable or computable terms my^ and my,-, then we can avoid 
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the undesirable direct derivative operation on y { t )  and u { t ) .  Then Eq. 4.4 would be 

transformed to: 
n  m  

= E ̂ ujhj (4..5) 
i=0 j=0 

where m y -  = L D [ S y ^ ]  and m u j  = L D [ S u j ] -  L D  denotes a linear dynamic operation. 

This LD operation thus forms the basis of the primary stage. There are several 

techniques for choosing the LD operation in the primary stage of continuous-time 

model identification (CMI). These methods can be categorized into three groups: 

1. Modulating functions: This method involves a linear operation wherein the 

terms Sy^ and Suj are first multiplied by well-behaved and suitably chosen 

known functions, and then integrated over the period of available data. The 

operation LD is determined by off-line computation, so this method is not well 

suited for real-time on-line applications. 

2. Spectral characterization of signals: When the spectral coefficients of the pro­

cess signals are used in the differential equations describing the continuous-time 

system under consideration, the calculus of these systems is approximated by 

computationally attractive algebraic expressions. The operation LD can be 

computed on-line in real-time applications. 

3. Poisson Moment Functional technique: The off-line computations of the modu­

lating functions method can be avoided by choosing modulating functions that 

stem from the impulse response functions of linear time invariant dynamic fil­

ters. The required values of the definite integrals can then be measured. The 

convolution integrals are measured as the outputs of the various stages of a 

set of filter chains. The Poisson Moment Functional (PMF) method employs 
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such a filter chain. The treatment of signals may then be viewed in terms of 

distributions or generalized functions. 

Although both the second and third methods listed above are suitable for real­

time on-line applications, the PMF method has advantages such as computational 

simplicity, very good noise rejection, and ease of implementation. Therefore, the PMF 

method is the most commonly used continuous-time model identification method 

among real-time parameter identification techniques, and it was chosen for the work 

reported in this dissertation. 

4.2 Poisson Moment Functional Approach 

The main task in an identification problem is to process the input-output data 

over a given interval of time. The process signals can be characterized by two different 

approaches. One method is to treat the process signals as ordinary functions. The 

other method treats the process signals as distributions or generalized functions. 

The latter characterization is superior due to its unlimited differentiability. The 

P M F  m e t h o d  s t e m s  f r o m  t h i s  g e n e r a l i z e d  f u n c t i o n  c o n c e p t .  A  s i g n a l  f u n c t i o n  f ( t ) ,  

t G (0,^0), is treated as a distribution or a generalized function, and expanded about 

a time instant fg in the following exponentially weighted series: 

oo 

m  =  Y i  -  t Q )  (4.6) 
&=0 

where is the generalized time derivative of an impulse distribution occurring 

at t = tQ. M j ^ [ f { t ) ]  in Eq. 4.6 can be obtained using the following expression: 

-Wil/Wl = /| = /(l)ft(lo - m (4.7) 



www.manaraa.com

29 

2nd stage <k<-l)th stage 1st stage 

\1/ \|/ 

Figure 4.1: A Poisson filter chain 

with 
t k  

(4.8) 

and A is a positive real number. 

P® is called the k-th order Poisson pulse function at ( = (g and is termed 

the k-th Poisson Moment Functional (PMF) of f(t) about t = tQ. can be viewed 

as the output due to an input f(t), at f = (g, of the (k+1) stage of a cascaded filter 

with identical stages, called the Poisson Filter Chedn, each element of which has a 

transfer function as indicated in Figure 4.1. 

When A = 1, these filters are called state variable filters, and A = 0 corre­

sponds to a chain of pure integrators. ] corresponds to the LD operation of the 

PMF approach. For zero initial conditions, some frequently used signals and their 

corresponding ] representations are summarized in Table 4.1. 
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Table 4.1: M^[ ] representation of most commonly used signals 

Mil/Wl 

' d f W ]  
i  

lk-1 - vg 

fl-ï -

/ t 3 - 3 V r 2 + 3 A V r i - A 3 / 0  

/L4 - + 8^Vr2 - + A-l/O 

4.3 Advantages of PMF Identification: A Comparison with Discrete 

Time Identification Algorithms 

Estimating the continuous-time model parameters and then transforming to the 

discrete-time model have some important advantages over estimating discrete-time 

model parameters directly. The primary advantage comes from "the immunity to 

noise" property of the PMF method. The following sections will investigate how 

measurement noise is handled in both continuous-time and discrete-time parameter 

identification methods using the PMF approach. 

4.3.1 Continuous-time parameter identification (PMF approach) 

The Poisson Moment Functional (PMF) algorithm is immune to zero mean ad­

ditive noise. In other words, the PMF approach directly gives the coefficients of 

the Laplace transformed ("s" domain) transfer function from noisy input and output 
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Figure 4.2: A SISO system with measurement noise 

measurements as depicted in Figure 4.2. The output, y ( t ) ,  contains measurement 

noise, e(t), which can be white (uncorrelated) or colored (correlated) noise. There­

fore, the PMF method can be applied to both deterministic and stochastic systems 

with little or no modifications. Noise to signal ratios more than 25% can be han­

dled very effectively with the PMF method. It will be shown later that even low 

frequency colored noise will not deteriorate the estimation algorithm's performance 

significantly. However, this is not true for discrete-time parameter estimation algo­

rithms. Discrete-time estimation algorithms are very sensitive to noise structure, and 

they may require a detailed noise model to obtain acceptable parameter identification 

performance. 

To show the noise immunity of the PMF method consider the system in Fig­

ure 4.2. The output y(t) can be written as: 

y { t )  =  w ( t )  +  e ( t )  (4.9) 
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where w { t )  is the output of the deterministic part of the plant. If we take PMF's of 

this equation, we find: 

Mi^[y\ = Mf^[w] + M}^[e] (4.10) 

The amount of filtering in the Poisson Filter Chain depends on the value of A. 

Therefore, for sufficiently large fg and small A, e® approaches zero and consequently 

its influence on the PMF's of y(t) becomes negligible. So we can write that: 

y l  - (4-12) 

By virtue of the low pass filtering nature of the Poisson Filter Chains, zero 

mean additive noise is removed by successive integration operations. Thus, the PMF 

method is practically immune to zero mean additive noise. 

4.3.2 Discrete-time parameter estimation 

In discrete-time parameter estimation algorithms, the measurement noise needs 

extra consideration. The recursive least squares algorithm gives unbiased estimates 

if the system description is: 

=  B ( q ~ ^ ) u { k )  - t -  e { k )  (4.13) 

where is the backward shift operator and e is the white noise (or uncorrected 

equation errors) [17]. This identification schema will correspond to the system in 

Figure 4.3-a. 

As seen from Figure 4.3-a there is a strict requirement on the measurement noise 

in this case. Measurement noise should be the output of a filter with transfer function 
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1/A(z) and with an input of white noise. This is a severe constraint on measurement 

noise and usually is not realistic in real-time operations. If the noise structure is 

different from that indicated in Figure 4.3-a, the least-squares algorithm will give 

biased estimates of system parameters. There are at least three different methods 

to model noise and construct a corresponding least-squares estimation algorithm in 

discrete-time systems to overcome the bias problem. These can be summarized as 

follows. 

1. One commonly encountered case in system identification is that the output 

additive disturbance is a white noise as depicted in Figure 4.3-b. In this case, 

the system equation becomes: 

Generalized least squares or extended least squares can estimate the parameters 

of the A and B polynomials without bias. But convergence of the algorithm 

becomes extremely slow if the noise-to-signal ratio is greater than 5%. One 

main reason is that the noise terms in the algorithm should be estimated, and 

any error in this estimation will deteriorate the algorithm's performance. 

2. Another way to deal with additive noise is to introduce a whitening filter to 

convert the correlated residual into a white residual. Consider the model: 

where v is the correlated" residual term. We can assume that the correlated 

residual- v can be described by the following autoregressive model: 

P  
v ( k )  +  ̂  C j ^ v { k  —  i )  =  e { k )  (4.16) 

i=l 

A { q - ^ ) y { k )  =  B { q - ^ ) u { k )  +  A ( q - ^ ) e { k )  (4.14) 

A { q - ^ ) y { k )  =  B { q - ' ^ ) u { k )  +  v { k )  (4.15) 
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in which are constant coefficients, p  is the order of the model, and e is white 

noise. In general Cj and p are unknown a priori. However, a good model can be 

obtained by preassigning p as 2 or 3, and then estimating Cj using a least-squares 

estimation algorithm. We can rewrite Eq. 4.16 as: 

C { q - ^ ) v { k )  =  e { k )  (4.17) 

where the filter C{q~^) is called the whitening filter. Combining Eq. 4.15 and 

Eq. 4.17 the following system-noise model can be derived: 

C { q - ' ^ ) A { q - ' ^ ) y { k )  =  C i q - ' ^ ) B ( q - ^ ) u { k )  +  e ( k )  (4.18) 

A block diagram showing this system is given in Figure 4.3-c. It is clear from 

Eq. 4.18 that to estimate the system parameters and bj it is necessary to 

estimate the residual autoregression coefficients cj. However, Eq. 4.18 is not 

linear in the polynomials A(g~^),5(ç~^), and C(q~^). Therefore, these pa­

rameters cannot be estimated by linear procedures and a numerical procedure 

is required. A generalized least-squares solution can be found as explained in 

Hsia [22]. However, some drawbacks are as follows: 

• There are more parameters to estimate due to the C polynomial. This will 

decrease the convergence rate. 

• It is computationally more complicated. 

• For high noise-to-signal ratios the convergence rate is very slow. 

• For a more correct noise model description, p  should be large. Assigning 

p a small value will decrease the accuracy of the noise model. 
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3. A more general approach to modeling the noise is to introduce an auto-regressive 

moving-average (ARMA) model [22] as depicted in Figure 4.3-d. Eq. 4.18 con­

tains the term A{q~^) • C{q~^) which in practical situations can be very high 

order. An ARMA model in this case, however, can be used to lower the order 

of the transfer function given in Eq. 4.18. With suitable choice of the orders of 

the D and C polynomials, a generalized least squares algorithm can be derived 

similar to the previous case. The same four drawbacks given above also apply 

to this case. 

4.3.3 Comparison by an example 

To compare the performances of a continuous-time parameter estimation algo­

rithm and a discrete-time parameter estimation algorithm, the system in Figure 4.2 

is considered with the following dynamics: 

and with white noise e. The damping ratio, natural frequency, and gain term of 

Eq. 4.19 are close to the actual values of the throttle-torque system studied in this 

dissertation. 

The discrete-time representation of the above system with a 50 Hertz sampling 

frequency is: 
= ̂  = 10-^(8.861.+ 6.725) 

A [ z )  r2 _ 1.94042 + 0.9418 

Using a random gaussian input sequence uniformly distributed between 0 and 1, 

the input-output data can be generated using Eq. 4.20 and assuming zero initial 

conditions. White, zero-mean measurement noise is then added to the output data. 
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Using these noise-added output and input sequences, the parameters of the model 

in Eq. 4.19 and Eq. 4.20 can be estimated using continuous-time and discrete-time 

approaches, respectively. For easy comparison the estimated continuous-time model 

parameters are converted to discrete-time parameters using a 50 Hertz sampling rate. 

The comparison is made for 5 different noise-to-signal ratios (NSR). Noise-to-signal 

ratio (NSR) is defined as the ratio of the variances of the noise and input signals. 

1. Discrete-time parameter identification: Because of the additive white-noise 

measurement error terms, Eq. 4.14 describes this system. The model of Eq. 4.14 

c a n n o t  b e  c o n v e r t e d  d i r e c t l y  t o  a  r e g r e s s i o n  m o d e l  b e c a u s e  t h e  v a r i a b l e s  e { k )  

are not known. By applying the Extended Least Squares (ELS) approach [38], 

a regression model can be obtained by suitable approximations. The parameter 

and regressor vectors become; 

e = - @2 h 62 q C2] (4.21) 

{ k )  =  [ y { k  —  1) y { k  — 2) u { k  —  1) u ( k  —  2) £ { k  — 1) £ { k  - 2)] (4.22) 

where 

s ( k )  =  y { k )  -  { k ) 9 { k  —  1 )  (4.23) 

The variables e { k )  are thus approximated by the prediction errors £ { k ) .  The 

model can be approximated by: 

y { k )  = y^(k)6 (4.24) 

The standard least squares algorithm can now be applied to find the parameter 

vector. 
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2. Continua us-time model parameter identification: The differential-equation rep­

resentation of the system, shown in Figure 4.2 and Eq. 4.19, is given by: 

d  w  d w  
+»l-ïr + ''2=''l" 

y = w -\- e 

By taking PMF's of these two equations we get: 

d w  
k  

d ^ w  

1 ^  d t  
+ C2%M = 

(4.25) 

(4.26) 

(4.27) 

(4.28) M f ^ [ y ]  =  M f . [ w ]  +  M f ^ [ e ]  

Since for sufficiently large time (g and small A, M f , [ e ]  — 0, we can write that 

M)^[y] — Mj^[w]. Now, if we expand Eq. 4.27, and substitute w^ = y®. we come 

up with the following representation: 

y k - 2  ~  ~ + G29& = (4-29) 

where j/® and u® are called the k-th Poisson Moment Functional (PMF) of y(k) 

and u(k) at i = fg- If we take A = 1, fe = 2, and omit superscripts for simplicity, 

Eq. 4.29 becomes: 

3/0 - 2yi + y2 + ^̂ (yi - ̂ 2) + a22/2 = "̂2 (4.30) 

Figure 4.4 shows how PMF's of the input and output signals are obtained. 

The parameters «1,02, and can then be obtained with a classical recursive 

least-squares algorithm. 

The performances of the continuous-time and discrete-time identification algo­

rithms for this example are compared in Table 4.2. As shown in Table 4.2, the PMF 
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Figure 4.4; PMF's of input and output signals 

approach gave very good estimates of system parameters. For the continuous-time 

case the sum of squares of error was 0.053 even for noise-to-signal ratio (NSR) as 

high as 80% while the discrete time case was about 0..5 for NSR as low as 5%. 

To show the effectiveness of the PMF approach in the case of colored measure­

ment the system in Figure 4.5 was considered. In Figure 4.5, r represents the time 

constant of the filter and d represents colored noise. For different filter time con­

stants and different noise-to-signal ratios the PMF algorithm was used to estimate 

the system parameters. Table 4.3 lists the findings. As seen from Table 4.3 the PMF 

method gives very good estimates of system parameters even in colored measurement 

noise cases. Even when the noise-to-signal ratio was 50% and the time constant of 

the filter was 5 seconds, the estimated denominator parameters were within 3% of 
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Table 4.2: Comparison of parameter identification algorithms 

Method NSR* «1 «2 6210-3 SSE& 

0 1.9404 -0.9418 0.6861 0.6725 0.0000 
5 1.9370 -0.9384 0.7053 0.6905 0.0000 

CMic 15 1.9348 -0.9362 0.7188 0.7032 0.0084 
30 1.9363 -0.9377 0.6927 0.6781 0.0128 
50 1.9417 -0.9430 0.6271 0.6150 0.0219 
80 1.9498 -0.9508 0.5379 0.5289 0.0530 

0 1.9404 -0.9418 0.6861 0.6725 0.0000 

DMI^ 

5 0.4242 0.5388 18.882 17.864 0.5085 

DMI^ 15 0.4025 0.4923 47.351 49.174 3.9225 
30 0.4531 0.4223 59.807 49.293 5.2271 
50 0.4368 0.3933 84.795 68.524 6.3535 
80 0.4018 0.3590 116.82 96.061 8.0575 

®Noise-to-signal ratio in percentage. 

^Sum of squares of error between model output and actual output without additive 
measurement noise. 

"^Continuous-time model identification based on PMF approach. System parame­
ters are obtained via a recursive least-squares algorithm. 

^Discrete-time model identification based on recursive extended least-squares 
approach. 

their actual values. 

4.4 Throttle-Torque System Identification Through PMF Method 

As mentioned earlier, three adaptive control algorithms were tested and com­

pared in this research. These algorithms are; 

1. One-shot controller design via one-shot parameter estimation. 
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Figure 4.5: Single input single output system with colored measurement noise 

2. Gain scheduling control based on multiple one-shot controller designs via mul­

tiple one-shot parameter estimations. 

3. Continuous adaptation of the controller based on continuous update of param-

The first two algorithms assume no prior knowledge of the system dynamics, 

that is, the continuous-time model order, the time delay, and selected model pa­

rameters should all be determined on-line, immediately before starting the transient 

test cycle. The motivation for these algorithms is to be able to run transient test 

cycles on different engines without spending any time on system identification and 

controller design for each engine. In contrast, the third algorithm, which is based on 

a conventional adaptive control approach, calls for a continuous update of parame­

ters during the test cycle, and requires that model order, time delay, and estimated 

eters. 
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Table 4.3; Performance of PMF method in colored noise 

NSR* r b  ai ®2 6I10-3 62IO-3 SSEC 

0 — 1.9404 -0.9418 0.6861 0.6725 0.0000 

10 0.2 1.9417 -0.9431 0.6781 0.6652 0.3216 
30 0.2 1.9442 -0.9455 0.6544 0.6423 0.7355 
50 0.2 1.9475 -0.9487 0.6221 0.6104 1.4011 

10 1.0 1.9437 -0.9450 0.6628 0.6514 1.0712 
30 1.0 1.9523 -0.9534 0.5756 0.5662 5.5403 
50 1.0 1.9670 -0.9678 0.4147 0.4079 17.912 

10 5.0 1.9499 -0.9511 0.5891 0.5797 9.2842 
30 5.0 1.9579 -0.9589 0.5018 0.4945 31.598 
50 5.0 1.9653 -0.9661 0.4229 0.4163 66.781 

®Noise-to-signal ratio in percentage. 

^Filter time constant. 
"^Sum of squares of error between model output and actual output without additive 

noise. 

values of model parameters be obtained off-line prior to the transient test cycle. The 

motivation for this algorithm is to be able to track time-varying values of system 

parameters, and therefore provides better tracking of torque and speed trajectories 

for a specific engine and dynamometer pair. Since it requires prior experiments and 

controller designs carried out off-line, it may be less advantageous for testing different 

engine and dynamometer pairs. The following sections detail the application of the 

PMF technique to all three cases explained above. 
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4.4,1 One-shot system and parameter identification using the PMF method 

The throttle-speed-torque system is a multiple-input single-output (MISO) sys­

tem with two inputs and one output as depicted in Figure 4.6. As shown in 

U V B ( s )  
/ A ( s )  

T 

•> 

Figure 4.6: Throttle-speed-torque system 

Figure 4.6, load torque can be written in the Laplace domain in terms of throttle 

command, u, and speed reference command, as: 

(4.31) 

Expanding Eq. 4.31 gives: 

[ A( S )£)(3)]T£ = B ( s ) D { s ) e  u + [ c ( s ) A ( s ) e - ^ d ^ ^ S ^ ^ f  (4.32) 

Some of the disadvantages of estimating the parameters of this MISO system are 

given by Unbehauen and Rao [31] and can be listed as: 
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1. MISO system identification will increase the system order as shown in Eq. 4.32 

and therefore there will be more parameters that need to be estimated. It 

means more severe persistently exciting conditions on input signals and slower 

convergence rate of parameters. An input signal is considered to be persistently 

exciting if it contains a sufficient number of distinct frequencies [32]. Therefore, 

increasing model order causes more restrictions on input signals. 

2. In MISO system identification, we cannot find the parameters of the individual 

transfer functions and This is due to the fact that the parameters 
^ ( a )  D ( s )  

of Eq. 4.32 are not linear on A { a ) f  B { i * ) , C ( s ) ,  and D ( s ) ,  Therefore, we need to 

find the parameters of iP( s) ' However, in controller design, 

it is necessary that common poles be canceled out from each transfer function. 

T h u s ,  e x t r a  c o m p u t a t i o n  i s  r e q u i r e d  t o  e x t r a c t  / 1 ( a ) ,  B { s ) ,  C ' ( a ) ,  a n d  D ( s ) .  

3. If the time delays Ty and T^i are different, then estimation of these time delays 

will increase the computational complexity of the estimation algorithm. 

However, for one-shot system identification purposes, the disadvantages listed 

above can be avoided by considering two separate single-input single-output (SISO) 

system identification problems as shown in Figure 4.7. 

To find the orders and parameters of B ( s )  and /1(a), and the time delay Ty, a 

speed reference command is kept constant and a step input to the throttle command 

is given. Load torque signals are sampled at a .50 Hz sampling rate for .5 seconds, and 

then are stored in the computer's internal memory. Similarly, to find the parameters 

of C'( j) and £>(a), and the time delay T,;, the throttle command is kept constant and 

a step input to the speed reference command is given. Again, load torque signals are 
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Figure 4.7: Two SISO representation of throttle-speed-torque system for system 
identification purpose 
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sampled at a 50 Hz rate for 5 seconds, and the values are stored. Since there is no a 

priori information assumed about the system, different models can be considered, the 

parameters of each model determined, and the model that describes the system best 

is found via an error minimization algorithm. The following models were considered 

both for throttle-torque and speed-torque systems: 

1. First order system 

2. Second order system 

3. Second order system with first order numerator dynamics 

4. Third order system 

5. Third order system with first order numerator dynamics 

6. Third order system with second order numerator dynamics 

Figure 4.8 a-f shows these models in the "s" domain. Derivation of the recursive 

parameter estimation equations for each case using the PMF approach can be found 

in Appendix A. 

The time delay was estimated through a separate minimization algorithm. For 

30 different time delays, evenly distributed between 0 and 0.6 seconds, parameters 

of each considered system were found. For each time delay considered, the sums 

of squares of error, J = i ~ calculated. j- corresponds 

to the set of actual observed load torque values and j corresponds to the set of 

estimated load torque values based on the model parameters. The time delay that 

gives the minimum sum of squares of error is considered to be the best estimate of 

the actual time delay for that particular model. This is repeated for each of the six 

cases outlined above. Among these models, the one that gives the minimum sum of 
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squares of the error is selected as the best estimate of the system transfer function 

and time delay. 

4.4.2 PMF system and parameter identification for gain-scheduling con­

trol 

As seen from Eq. 4.31, the engine speed appears as a quadratic nonlinear input 

to the describing equation of the governor. Therefore, parameters of the throttle 

valve-speed-torque system will depend on the operating conditions of the system. A 

gain-scheduling control was implemented based on the measurements of engine speed. 

Operating conditions of the engine are divided into 5 regions according to the engine 

speed: 1200-1400 rpm, 1400-1600 rpm, 1600-1800 rpm, 1800-2000 rpm, and 2000-

2200 rpm. For each speed range the parameter and system identification is repeated 

through multiple one-shot parameter estimation algorithms, in a very similar fashion 

to the previous section. When implementing the transient test cycle, the controller 

parameters are changed as a function of the operating conditions based on the known 

parameters of the system for each speed range. 

4.4.3 Continuous update of parameters through the PMF method 

If controller parameters are to be changed based on the parameters of the sys­

tem in a recursive fashion, then system identification must be carried out prior to 

the transient test cycle. In other words, the system model order, time delay, and 

an estimate of the system parameters are needed for continuous adaptation of the 

controller. This is due to the following reasons: 



www.manaraa.com

49 

1. For a continuous parameter update of the system, a model for the system should 

be selected prior to implementing the parameter estimation algorithm. 

2. Estimating the time delay in a recursive fashion is very costly from a compu­

tational point of view. Therefore, it is usually assumed that an upper bound 

on the time delay is known. 

3. Although recursive parameter estimation algorithms do not theoretically re­

quire a prior knowledge of system model parameters, in actual real-time imple­

mentation of adaptive control algorithms prior parameter estimation is needed. 

During the parameter estimation algorithm if the parameters estimate an un­

stable system, or if they are not within a predefined range, then the system 

parameters should be switched to their pre-estimated values. 

Since parameter updates will be carried out recursively during the transient 

test cycle, MISO system identification should be possible. If we rewrite the MISO 

representation of the system as in Eq. 4.32: 

Using the technique from the previous section, that is, employing two SISO 

identification algorithms, Ac{s), Bc{s) and Cc(s) can be found. Applying Eq. 4.34 

to the results of the previous section gives a fourth order MISO system. However, 

[ A { s ) D { s } ] T i  =  B i s ) D i s ) e  u  +  [ c { s ) A { s ) e - ' ^ d ' ]  (4.33) 

Eq. 4.33 can be written as: 

(4.34) 

where >lc(s) = ,4(5)Z)(s), B d s )  =  B { 3 ) D { s )  and Cc{ s )  =  C(s)A(5). 
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higher order models are not suitable in a recursive parameter estimation algorithm 

since parameter convergence will be very slow and more severe persistent excitement 

conditions on the input signals will be required. Therefore, a lower order model is 

fitted to the experimental data. Using step inputs to the throttle valve and speed 

reference commands as shown in Figure 4.9, the response of the system is obtained 

with a 50 Hz sampling rate. Then, using a recursive PMF parameter identification 

algorithm, as explained in Appendix A, the lowest order of the systeni that describes 

the input-output relation with a reasonable accuracy was determined. It was found 

that, as shown in Eq. 4.35, a second order MISO model can adequately represent the 

throttle-speed-torque system. 

G l  =  - k  ̂ .  ( 4 . 3 5 )  
^ 3^ + 3.765 + 4.34 ^2 + 3.76a + 4.34 

Figure 4.10 compares the actual load torque output with estimated load torque 

values when the step inputs shown in Figure 4.9 are applied to the system. As seen 

from Figure 4.10, the second order model shown in Eq. 4.35 is a good approximation 

for the overall open-loop throttle-speed-torque system. 

It was shown in this chapter that the PMF method was a very powerful tool 

in estimating the continuous-time model parameters from the discrete set of the 

input-output measurements, and it showed a significant convergence superiority to 

the discrete-time parameter identification methods when measurements were cor­

rupted with white (uncorrelated) or colored (correlated) noise. Chaper 6 will show 

how a pole-zero assignment controller design will be performed based on the process 

knowledge obtained using the PMF method. 
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5. CONTROLLER DESIGN 

Various controller design methods can be used in self-tuning regulators depend­

ing on the specifications of the closed-loop system. Some of the well known design 

methods are minimum variance control, pole-zero placement, linear quadratic gaus-

sian control, and hybrid control [32]. In the Federal Transient Test procedure, engine 

speed and torque should follow a trajectory specified by the Environmental Protec­

tion Agency (EPA). The EPA provides specifications on the quality of the closed-loop 

control. Since the closed-loop response specifications will be in the time domain, the 

pole-zero assignment algorithm is the most suitable controller design method. 

For an adaptive control strategy that requires one-shot parameter estimation, a 

one-shot controller design is performed on-line using the pole-zero assignment algo­

rithm. Since the model order is not known a priori, different pole-zero assignment 

algorithms are developed to cover every possible case considered in this study. When 

the throttle-torque process has unstable zeros, that is, zeros outside the unit circle 

in the discrete domain, then a limiting form of the design algorithm, namely pole-

placement, has been employed to prevent canceling unstable zeros. The option of 

adding an integrator to the controller to have zero steady-state error and to be less 

sensitive to low frequency modeling errors is used in this research. 

For gain-scheduling control, multiple one-shot pole-zero placement methods are 
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carried out. Depending on the engine speed, the controller parameters are modified 

during the transient test cycle. 

For continuous estimation of system parameters the parameters of the controller 

are also updated at each sampling point. A pole assignment algorithm with an 

integrator has been used. The process zeros are not cancelled due to the possibility 

that the estimation algorithm may sometimes result in unstable process zeros. 

Derivation of the pole-zero placement algorithm for the different cases explained 

above will be given later in this chapter. Section 5.1 gives the Environmental Pro­

tection Agency (EPA) specifications for a valid transient test cycle. Section 5.2 

summarizes the well-known pole-zero placement controller design method following 

that of Astrom and Wittenmark [38]. However, during the computer simulations of 

the closed-loop system performance with the controller designed through this pole-

zero assignment algorithm, it was found that closed-loop stability is not guaranteed 

with the pole-zero assignment algorithm. This was mainly due to the arbitrary selec­

tion of the observer polynomial parameters in the pole-zero assignment method. The 

development of a new modified pole-zero assignment technique to ensure closed-loop 

stability is explained in Section 5.3. The application of this modified algorithm to the 

three adaptive approaches to the torque control problem is discussed in Section 5.4. 

Since there is a time-delay in the throttle-torque system, the Smith Predictor scheme 

was used to compensate the time-delay effectively. Section 5.5 reviews the Smith 

predictor design of Marshall [52]. Although the Smith predictor has the advantage 

of compensating the time-delay, it cannot effectively deal with known disturbances 

of large amplitudes. Due to the speed-torque interactions, there is a large load dis­

turbance applied to the throttle-torque control problem. Design of a feedforward 
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controller to compensate for the load disturbances is explained in Section 5.6. Sec­

tion 5.7 discusses implementation issues of the adaptive torque control approaches 

such as estimator implementation, sampling rate selection, anti-aliasing filter and 

antireset-windup implementation. Section 5.8 explains the software development. 

5.1 EPA Specifications 

The heavy-duty transient engine cycles for gasoline and diesel fueled engines are 

listed in [49]. These second by second listings simulate typical torque and speed op­

erating conditions of heavy-duty engines. In these listings, both speed and torque are 

normalized (expressed as a percentage of maximum). Both the speed and torque tra­

jectories should be unnormalized for each specific engine considered. To unnormalize 

rpm, the following equation is used: 

,  % r p m  { M e a s u r e d  r a t e d  r p m  —  c u r b  i d l e  r p m )  ,  .  „  
A c t u a l  r p m  =  h  c u r b  i d l e  r p m  

(5.1) 

Torque is normalized to the maximum torque that can be produced by the engine 

at the rpm listed with it. Therefore, to unnormalize the torque values in the cycle, 

the maximum torque curve for the John Deere engine is used. Figure 5.1 shows the 

reference torque and speed trajectory in normalized form. Although some torque 

values are referred to as "closed rack motoring" in the reference torque trajectory, 

they were set to —10 in Figure 5.1 for clarity. Actual values of these "closed rack 

motoring" torque values should be calculated for each engine considered following 

EPA guidelines explained in [49]. One way to calculate those torque values is to find 

the amount of negative torque required to motor the engine at idle and rated speeds, 

and then linearly interpolate using these two points. 
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Figure .5.1: Reference speed and torque trajectories for heavy-duty diesel 
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To have a valid transient test cycle, the following specifications must be met by 

• The coefficients of the linear regression equation between the actual and refer­

ence values of torque, speed, and brake horsepower must lie within the specified 

limits given in Table 5.1. The method of least squares is used to find the best 

fit equation having the form 

y = The feedback value of speed, torque, or brake horsepower 

m = Slope of the regression line 

X = The reference value of speed, torque, or brake horsepower 

6 = The y  intercept of the regression line 

• The standard error of estimate S E  o i  y  o n  x  and the coefficient of determination 

(r^) must also be within the limits given in Table 5.1. The values of SE and 

are determined from the following equations [55]: 

the system: 

y  =  m x  +  b  (5.2) 

where 

n  2 

r  
2 _ U=1 

(5.3) n  
^ { x i  -  x f ( y i - y f  
i = l  

n  
- { m x i  +  b ) f  

(5.4) 
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where 

n  

i = 
n  

n  

» = 4-

n  = 1199 { N u m b e r  o f  o b s e r v a t i o n s )  

For a test to be considered valid, the criteria in Table 5.1 must be met for both 

cold and hot cycles individually. The cold cycle procedure specified for the 

federal test procedure transient test is to cold-soak the engine by shutting it off 

for a minimum of 12 hours or until the oil temperature reaches 75°F. The hot 

cycle follows the cold cycle after a hot-soak period of 20 minutes. 

Table 5.1: Regression line tolerances 

Speed Torque BHP" 

S E m a x  100 rpm to
 

00
 

o
 

6.4C BHP 

m  0.97-1.03 0.83-1.03 hot 
0.77-1.03 cold 

0.89-1.03 hot 
0.87-1.03 cold 

7-2 . 
m m  0.97 0.88 hot 

0.85 cold 
0.91 

b  ±50 rpm ±15 ft-lb ±5 BHP 

®Brake horsepower. 

^13 percent of power map maximum engine torque. 
^8 percent of power map maximum BHP. 
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• The total work done during the cycle is calculated by integrating the power 

based on the actual speed and torque. This actual work is used for comparison 

to the reference work. The reference work for the John Deere engine tested in 

this research was 5.46 brake horsepower-hour. According to the EPA, the actual 

brake work for each cycle (cold and hot start) must be between 4-5 percent and 

— 15 percent of the reference brake work in order for a test to be valid. 

5.2 Controller Design: Pole-Zero Assignment Algorithm 

In this section, the well-known pole-zero assignment algorithm will be reviewed. 

Some deficiencies of this method and the development of a new pole-zero assignment 

algorithm will be explained in Section 5.3. Controller design using the pole assign­

ment algorithm is explored in many references. In this research, the notation follows 

that of Astrom and Wittenmark [43]. 

Consider the closed-loop torque control system shown schematically in Fig­

ure 5.2. Tr represents the reference torque trajectory. Ta is the actual torque out-
B (  

put, and u  is the control signal. The process model is specified by Since 

a Smith predictor will be used in the final design, the time delay is excluded from 

the process model for controller design purposes. The use of the Smith predictor 

to overcome the time delay problem, and feedforward compensator design for the 

reference speed-torque system will be explained later in this chapter. The desired 

closed-loop system response is specified by • The control signal, u, is calcu-

lated by R [ z ) u  = T{ z )Tr — S{ z )Ta as seen in Figure 5.2. 

The pole-zero placement problem then becomes the determination of polynomials 

i?(z), and T{z) such that the closed-loop system transfer function will be equal 
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R(z) 

S(z) 

A(z) 

B(z) 
R(z) 
T(z) 

Figure 5.2: Block diagram of the pole assignment control law 

to the desired closed-loop transfer function, The solution is given by the 
A m \ ^ )  

following seven step process. 

1. Specify the desired closed-loop response. In other words, specify the .4m( : ) and 

Bm{-) polynomials from the design specifications. The orders of the .4m(-) 

and Bm[-) polynomials should meet the following inequality: 

d e g A m i : )  -  d e g B m i - )  >  d e g A ( z )  -  d e g B ( z )  (5.5) 

Setting d e g A m ( ~ )  =  d e g A ( z )  and d e g B m i ^ )  = d e g B { : )  will simplify the con­

troller design. 

2. Factor B ( z )  as B ( z )  =  B ~ ( z ) B ' ^ { z ) ,  where B ~ ( z )  has all its zeros outside 

the unit circle in the "z" domain and has all its zeros inside the unit 

circle. Fix the highest power of to unity. In other words B~^{z) should 
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be a monic polynomial. If cancellation of process zeros are not desired, then 

s e t  B ' ^ { z )  =  1 ,  a n d  B ~ { z )  =  B { z ) .  

3. Factor B m { z )  as B m { z )  —  B ~ { z ) B ^ { z )  .  (Closed loop zeros should include 

all open-loop zeros that are not cancelled) 

4. Introducing an integrator to the controller will improve the closed-loop system's 

response in the following ways: 

(a) It ensures that the closed-loop system has a high feedback gain at low 

frequencies. It means that the closed-loop system will be insensitive to 

low-frequency modeling errors and low-frequency disturbances. 

(b) It forces the steady state error to go to zero in case of modeling errors and 

system disturbances. 

Integral action can be achieved by requiring that (z — 1) is a factor of R { z ) :  

R { z )  =  R i { z )  •  ( z  -  1 )  (5.6) 

5. Find the degree of the observer polynomial from the following inequality: 

d e g A o { z )  >  2 d e g A { z )  -  d e g A m i ^ )  -  d e g B ' ^ { z )  (5.7) 

Select an observer polynomial A o { z ) .  A dead-beat observer can be chosen for 

simplicity. In principle, observer polynomial dynamics should be faster than 

system dynamics. 

6. Find R i { z )  and S [ z )  from the following Diophantine equation: 

A { z ) { z  -  l)Ai(z) 4- B ~ { z ) S { z )  =  A o { z ) A m { z )  (5.8) 
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Choose a solution such that <ie35(^) < d e g A { z ) - \ - \  ? L n à  d e g R - ^ { z )  =  c/egyic>(z)+ 

d e g A m { z )  -  d € g A { z ) .  

7. Calculate R { z )  and T { z )  from following equations: 

In the pole-zero assignment algorithm of Astrom and Wittenmark, as explained 

in Section 5.2, the observer polynomial Ao{z) was selected somewhat arbitrarily. The 

only condition imposed on the observer polynomial was to restrict all the zeros of 

the observer polynomial to lie inside the unit circle in the z-plane. However, the 

selection of the observer polynomial plays an important role in the adaptive control 

applications as listed below: 

1. As mentioned in Section 5.2, the observer polynomial dynamics should be faster 

than system dynamics to provide a better disturbance rejection capability. 

2. Although the observer polynomial does not have any effect on the overall closed-

loop transfer function, it effects the closed-loop stability in the real-time im­

plementation. An arbitrarily selected observer polynomial could result in the 

design of an unstable controller. In other words, there is always a possibility 

that the zeros of the R{z) polynomial can lie outside the unit circle in the 

z-plane. This means that although the overall closed-loop system looks sta­

ble from the theoretical analyses, it cannot be implemented due to unstable 

controller design. 

R { z )  =  B ^ [ z ) { z - \ ) R i { z )  

^( - )  =  B m { = ) A o { z )  (5.10) 

(5.9) 

5.3 A Modified Pole-Zero Assignment Algorithm 
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3. The observer polynomial also effects the input signals applied to the system. 

When observer polynomial zeros are close to the origin in the z-plane, the 

resulting control law can create large control input signals which may not be 

realizable in the real-time implementation. On the other hand, setting the zero 

locations close to the unit circle will result in high sensitivity to any disturbance 

that enters the system. 

To overcome these limitations of the pole-zero assignment algorithm, some mod­

ifications can be made. The proposed algorithm becomes: 

1. Follow steps 1 through 4 from Section 5.2. 

2. Find the degree of the observer polynomial from Eq. 5.7. 

3. Initially set all the zeros of the observer polynomial to the origin in the z-

plane. This produces a dead-beat observer which has very good noise rejection 

capability. 

A o { z )  =  { z  -  a o ) ^  (5.11) 

where ao = 0, and I is the degree of the observer polynomial. 

4. Solve for R \ { z )  and S { z )  from the Diophantine equation given in Eq. 5.8. 

5. Calculate the zeros of Ri{z). If any of these zeros lie outside the unit circle, 

it means that the pole-assignment controller with selected observer polynomial 

results in an unstable controller which makes it impossible to implement in 

practice. If this is the case, then set oo = ao + Aao, where Aog is a predefined 

increment, and repeat steps 3 to 5 until all the zeros of lie inside the unit 

circle. 
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6. Calculate R { z )  and T { z )  from Eq. 5.9 and Eq. 5.10, respectively. 

7. If the amplitude of the input signal is a concern, simulate the closed-loop system 

response to a step input. Calculate the maximum required control signal from 

the simulations. If it is too high to apply to the real system, then set ao = 

ao + Atto, where Aoq is same as before, and repeat steps 3 to 6. 

8. Repeat steps 3 to 6 at each sampling point. 

As mentioned earlier, three adaptive control strategies were developed in this 

research. Two of these algorithms assume no information about the system. There­

fore, model order of the plant transfer function is unknown a priori. Application of 

the pole-zero placement algorithm to the three algorithms will be explained in the 

following sections. 

5.3.1 Adaptive control with one-shot controller design 

Although six different models were considered in the continuous time domain for 

system identification purposes, only three different cases exist in the discrete-time. 

Controller design is carried out after the "s" domain transfer function description 

of the system is converted to a "z" domain transfer function. So controller designs 

corresponding to all 3 cases need to be considered. The discrete-time representation 

of the process is: 

• if the system is first order: 
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• if the system is second order: 

B { z )  _  6 1 Z  +  6 2  
(5.13) 

A { z )  - 2  _ | _  a g  

• if the system is third order: 

+ (5.14) 
^l(z) +  a i z ^  +  a 2 Z  +  

Application of the modified pole-assignment algorithm to the throttle-torque 

control system is shown by the following steps: 

1. Specification of the closed-loop response: To avoid complexity, the order of the 

closed-loop reference model was selected to be equal to the order of the open-

loop process model. Therefore, depending on the open-loop system order, the 

following desired closed-loop transfer functions were selected: 

(a) if the system is first order: 

B m { z )  _ 1 — a 
A m , ( z )  z  —  a  

(b) if the system is second order: 

• when process zeros are cancelled 

Bm{z) (1 — a)^z 

(5.15) 

A . m { z )  [ z  —  a ) 2  

• when process zeros are not cancelled 

Bmjz) _ (1 — a)^ b]^z -f 62 

^m{z) ^1+^2 (z — a)2 

(c) if the system is third order: 

(5.16) 

(5.17) 
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• when process zeros are cancelled 

B m { ~ )  _  ( 1  —  

A m ( ^ )  [ z  —  a ) ^  
(5.18) 

• when process zeros are not cancelled 

Bm{z) _ (1 - Q)^ biz^ + 62^ + H 

Am{z) + ^2 ^3 (z — 
(5.19) 

where a = e ' T  is the sampling period, and r is the desired time constant 

of the closed-loop system. The gain term ensures that the closed-loop system 

will have zero steady-state error. The Environmental Protection Agency (EPA) 

specifications suggest that the closed-loop system should reach its steady-state 

value, to a given reference step input, in one-second or less since torque and 

speed trajectories are given by seconds. Therefore, the desired time constant, 

r, is set to 0.25 seconds, since a closed-loop system will reach 98% of its steady-

state value to a given step-input in four time constant. 

Factorization of B{z) as B{z) = B~{z)B'^{z): Depending on whether the 

process zeros are cancelled or not, B~{z) and B'^{z) have following values: 

• B"^(z) = 1 and B ~ { z )  =  B { z )  if process zeros are not cancelled, and 

•  B ' ^ { z )  = B { z ) l h - ^  and B ~ { z )  —  if process zeros are cancelled. Note 

that the division by 6^ is required to keep B'^{z) a monic polynomial. 

Factorization of Bm{^) as B m { z )  = B ~ { z ) B ^ { z ) :  Using the information from 

t h e  f i r s t  t w o  s t e p s  B ^ { z )  c a n  b e  f o u n d  a s :  B ^ { z )  =  B m { z ) / B ~ { z ) .  
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4. Introducing an integrator to the controller: When an integrator is included as 

a part of the controller, then the controller polynomial, R(z), becomes: 

iZ(0) = (r-l)i2l(z)5+(z) (5.20) 

where the degree of the ^^(z) polynomial is the same as the order of the open-

loop transfer function. Therefore, the polynomial is selected as follows: 

• if process zeros are cancelled: = 1, and 

• if process zeros are not cancelled: 

(a) i?i(z) = z + if the degree of A { z )  is two, and 

(b) R [ z )  =  + r - ^ z  + r2 if the degree of .4(z) is three. 

•5. Determination of the observer •polynomial: The degree of the observer polyno­

mial is determined from: 

d e g A o { z )  =  2 d e g A { z )  —  d e g A m { z )  -  d e g B ' ^ { z )  (5.21) 

The above formula will give us the following values for the degree of the observer 

polynomial: 

•  d e g A o { z )  = 1 if the process zeros are cancelled, and 

•  d e g A o i z )  =  d e g A { z )  if the process zeros are not cancelled. 

The observer polynomial was selected so that all of its zeros lie on the real axis 

of the z-plane. Furthermore, the zero locations were restricted to the range 

of 0 to 1 in the z-plane to preserve stability and to prevent oscillatory output 
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behavior. Initially all zeros were located at the origin. In general, the observer 

polynomial was selected as: 

-4o(^) = (z — ao)^ (5.22) 

where I is the degree of the observer polynomicJ and a© is the zero location, 

with the initial value of ao = 0. 

6. Determination of the controller polynomials: The controller polynomials, 

and S { z ) ,  were determined from the Diophantine equation given in Eq. 5.8. The 

degree of the S{z) polynomial in that equation was selected to be equal to the 

degree of the A{z) polynomial to preserve a causal control law. The parameters 

of jRi(r) and S(z) were found by the Gauss elimination method. 

7. Stability considerations: The roots of R \ { z )  were checked. If any root was 

found outside the unit circle in the z-plane, then observer zero locations were 

reset as ao = ao + Aoo, where Aao was set to 0.01. Steps 5, 6, and 7 were 

repeated until all the roots of iî^(2) were inside the unit circle. 

5.3.2 Adaptive control with continuous update of controller parameters 

As explained in Chapter 4, a second order model was selected to best describe 

the process under consideration. Therefore, all the controller design equations remain 

the same as the previous section's second order case. The difference from the one-

shot pole placement algorithm will be the calculation of controller parameters at each 

sampling instant based on the estimated parameters of the system. 

In adaptive control systems where continuous update of controller parameters 

is employed, a pre-designed safe-control algorithm is needed in practice. This is 
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Figure 5.3: Closed loop system simulation when safe controller is employed 

due to the fact that when the parameter estimation algorithm occasionally comes 

up with an unstable process estimate then the resulting pole-placement algorithm 

will actually lead to an unstable closed-loop operation. Therefore, the following 

controller is selected as the safe controller using the process description of Eq. 4.35 

and a sampling frequency of 5 Hertz. 

These controller parameters will be used on-line whenever the estimated process 

parameters ate not within the range of reasonable values, as will be explained later 

in this chapter. Figure 5.3 shows the simulated response of the closed-loop system 

with the above controller to a step input. 

R { z )  = - 0.822r - 0.178 

5(z) = 4.271^2 _ 5.506: + 1.823 

T(z) = 1.940;2 _ i.T44z + 0.392 

(5.23) 

(5.24) 

(5.25) 



www.manaraa.com

5.4 Smith Predictor 

One common characteristic of many process control problems is that the system 

to be controlled contains a significant time delay. There are three basic design ap­

proaches for systems that contain time delays: conventional design methods, optimal 

control design, and the Smith predictor [50]. Although conventional design methods 

have the advantage of being less complicated, the closed-loop system will not perform 

as well as when the time delay is zero. The reason for this is that the delay intro­

duces additional phase shift in the loop and thus tends to destabilize the closed-loop 

system. To counteract this, the gain of the controller must be reduced below the 

value which would be used if the delay was zero. Hence the system's response will 

be slower to input commands. 

Application of optimal control approaches to time delay systems is explained 

in detail in [51]. When optimal design is applied to a system with delay in the 

control, the basic approach is to convert the problem to a nondelay problem and 

then use the standard techniques for such problems to obtain a solution. It turns 

out that the solution requires the prediction of the system state at Tj time units 

into the future where is the time delay. In this respect, there exists a similarity 

between the optimal design configuration and the Smith predictor configuration. One 

disadvantage of the optimal design method to the Smith predictor is that a state 

estimator of some form must be implemented. In contrast, the Smith predictor 

requires only output feedback. • 

Marshall [52] gives a detailed treatment of the Smith predictor design approach. 

The Smith predictor configuration is used in this research to enlarge the application 

of adaptive control systems to time delay processes. A block diagram representation 
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of the Smith predictor is shown in Figure 5.4. .A. load disturbance is not included 

T(z) 

R(z) 

A(Z) 

B(z) 

A(Z) 

B(z) 

S(z) 

Figure 5.4: Smith predictor for throttle-torque system 

in this representation for simplicity. In this figure T ( z ) ,  R { z ) ,  and 5(r) represent the 

delay-free controller, B(z)/.4(z) is the delay free part of the process transfer function. 

k'T is the time delay of the system where T is sampling period, and 5(r)/,4( r ) and 

k » T are the estimates of the process transfer function and time delay, respectively. 

The control signal, u, is delayed h y  k  *  T  seconds before it effects the output. 

During this initial period of time the controller cannot influence the output. However, 

the signal shown on Figure 5.4 at point B is a predicted version of the output signal 

and can be used as a feedback signal. Thus, the controller design can be carried out 

using classical methods for delay-free systems. Therefore, the specifications of system 

performance can be given in familiar delay-free terms. 

The second outer loop in Figure 5.4 is included because of the possible mismatch 

between actual and estimated system parameters. Removal of the outer loop gives 



www.manaraa.com

71 

open-loop control, which makes no use of actual output information, and can lead to 

inferior performance in practice. 

5.5 Feedforward Compensation 

Any variation of the speed reference command causes a load disturbance to the 

throttle-torque system. Since the load disturbance does not appear explicitly in 

Smith's method, a feedforward compensator, is added to the Smith predictor 

as shown in Figure 5.5. D { z ) I C ( z )  in Figure 5.5 represents the reference speed-torque 

transfer function. As feedforward does not influence the stability of a control loop, 

the feedforward control system can be added after the design of the system controller. 

For an ideal feedforward control Cj(z) is calculated by: 

W = I (5.26) 

where G j ) { z )  =  G ^ { z )  =  D { z ) / C { z ) ,  and (*) represents the estimated 

quantities of actual variables. 

If the above feedforward control can be realized and if it is stable, then the 

influence of the disturbance, on the output torque. Ta, is completely eliminated. 

To obtain a stable feedforward control the zeros of G p { z )  should all be inside the unit 

circle. Depending on the zero locations of Gp{z) and the employed adaptive control 

strategy, different feedforward controller design strategies are followed to cover every 

possible case that can be encountered in transient test cycle implementation. These 

will be explained in following sections. 
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5.5.1 One-shot feedforward controller design 

As discussed in Chapter 4, six different "s" domain models were considered for 

both reference speed-torque and throttle-torque systems. The "s" domain transfer 

functions that were obtained are discretized in software to form "z" domain transfer 

functions using a sampling period of T seconds. Based on these "z" domain transfer 

functions, a feedforward controller is designed using following criteria: 

1. If G j p { z )  does not have any zero inside the unit circle, and if the order of G ^ { z )  is 

greater than or equal to the order of G^{z), then a perfect cancellation feedback 

is obtained by selecting a feedforward compensator of the form: 

c d ' )  = ^ (wn 
( ~ ' p [ z )  

2. If G p { z )  has a zero which is located inside the unit circle then a cancellation 

feedback is not possible. In this case, the discretization of Gj^{s)/Gp{s) is taken 

as an approximation to the feedforward control design problem. Since the zeros 

of Gp(s), if any, lie on the right half plane of the "s" domain, the discretization 

of Gj^{s)/Gp{s) always results in the poles of the feedforward compensator 

being inside the unit circle, allowing a stable compensator. Therefore, in these 

cases the feedforward compensator is designed as: 

' G d i s )  

G p { s ) _  

where E represents z-transform operator with zero-order-hold. 

Cj(z) = Z (5.28) 

3. If the order of G p { z )  is higher than the order of Gj(z), then cancellation feed­

back is not realizable. In these cases the order of the Gj^{s) can be increased 
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with extra dynamics which are much faster than the dynamics of Gj^{s). Thus 

the model still keeps its accuracy to describe the system, yet now it is suitable 

for feedforward compensator design. If the increased order model of is 

shown as G'^{s), then the feedforward compensator is designed either as: 

(a) 
Gl(z) 

— A / , (5.29) 
trp(Z) 

if G p { z )  has all of its zeros inside the unit circle, or, 

(b)  

if G p { z )  has any of its zeros outside the unit circle. 

(5.30) 

Implementing a continuous-time parameter estimation algorithm thus provides a 

significant advantage in designing a feedforward compensator for the system. It pro­

vides the design of a stable feedforward compensator even if the process has unstable 

zeros in the "z" domain or if the original feedforward compensator is not realizable. 

Discretization of the continuous-time transfer functions has been carried out in 

software through the following methods: 

• For systems up to third order models, exact discretization is carried out (zero-

order-hold is included) using z-transform tables loaded into software. 

• For systems higher than third order models, the Tustin approximation is used. 

In the Tustin approximation, the z-domain transfer function (with zero-order-

hold sampling) is obtained by s = ^ substitution in the s-domain transfer 

functions. 
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5.5.2 Adaptive feedforward compensator with continuous update of pro­

cess parameters 

When updating the parameters of the process at each sampling instant, the 

parameters of the feedforward compensator as well as the parameters of the pole-

placement controller are updated at each sampling point based on the process pa­

rameters. The zero locations of Gp{z) are checked at each update. If the zeros of 

Gp{z) are not outside the unit circle, then a perfect cancellation feedforward con­

troller of C^(z) = Gj(z)/Gp(z) is applied. If any zeros of Gp{z) lies inside the unit 

circle, then the feedforward compensator parameters are switched to a safe controller 

whose parameters are found by using Gp[z) and G^{z) from Eq. 4.35. So the "safe 

feedforward compensator" becomes: 

0.06464Z + 0.0503 _ 
[ di^)]safe 0.0879Z0.0684 ^ 

5.6 Implementation Issues 

Although the use of adaptive control is very appealing in many situations, there 

are several key issues that need to be taken care of in practice. In the idealized 

environment of simulations it is easy to get different types of adaptive algorithms 

to perform exceptionally well. However, in practice, the situation can be quite the 

opposite. The reason for this is that in practical situations there are all kinds of 

violations of the conditions of the theory. The self-tuning controller must be able to 

handle nonlinearities, unmodeled dynamics, and unmodeled disturbances over a wide 

range of operating conditions. Some of the different aspects of these implementation 

issues are given in this section. 
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• Estimator implementation: As mentioned in Chapter 4, a continuous-time 

parameter estimation algorithm was used for this study. Robustness and im­

munity to noise were two of the desired features of this algorithm. In one-shot 

parameter estimation the large amplitude input signals are used to improve the 

numerical conditioning. To increase the numerical accuracy of the estimator 

it is usually desirable in practice to have the input and output signals in the 

same amplitude range. Since the input and output signal ratios in the throttle-

speed-torque control system are close to one, normalization is not required. 

Although an on-line batch least-squares method can be applicable for one-shot 

parameter estimation, a recursive least squares algorithm is used to show the 

applicability of the PMF method to adaptive control systems. The recursive 

least square estimator is described by the following equations [35]: 

where 0 is a vector consisting of the parameters to be estimated, is a vector of 

delayed inputs and outputs, and £ is the prediction error. P is proportional to 

the covariance matrix of the estimation error and A is an exponential forgetting 

factor to allow tracking of time varying parameters. However, updating of the 

P covariance matrix is not well conditioned from a numerical point of view. 

In our research, the system identification and parameter estimation was first 

carried out using the above update formula for P. Although calculations were 

carried out in double precision, convergence of the parameters was not found to 

be satisfactory. To overcome the problem, the U — D factorization by Bierman 

e { k )  =  e i k  -  1 )  +  P { k ) ^ { k ) e { k )  (5.32) 
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and Thornton [53] was used. Simulation results employing U  —  D  algorithm 

for the P matrix update showed satisfactory convergence results. The data for 

this simulation was obtained from the transient tests performed with the engine 

and dynamometer pair used in this study. 

In one-shot parameter estimation algorithms, the forgetting factor A is set equal 

to one. This means that all the data in the step-response test is weighted 

equally in the parameter estimation algorithm. However, during the continuous 

update of parameters, a variable forgetting factor due to Ydstie et al. [54] was 

employed. The recursive equations to update the forgetting factor, A, are given 

and where ctq is the tuning parameter, in the order of 0.1 to 10 [35]. A large 

value of (TO gives small adaptation. A small value of CTQ , on the other hand, 

results in fast adaptation but at the cost of larger parameter uncertainity. In 

the experimentation in this research, (TQ was set to 0.5. The forgetting factor 

calculated by the above equation will be close to unity if the process is not 

excited or if the parameter vector 0 is close to its correct value. Hence, the 

p r o b l e m s  a s s o c i a t e d  w i t h  t h e  c o n t i n u o u s  i n c r e a s e  o f  t h e  p a r a m e t e r s  o f  t h e  P  

matrix, also called "estimator windup", can be effectively dealt with. Although 

by: 

(5.33) 

where 

n { k )  =  l - u ; ( f c ) - l i l ^  
CTq 

w { k )  =  ( k  —  l ) P { k  —  l ) i f i { k  — 1) 

(5.34) 

(5.35) 
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the use of the variable forgetting factor helps to avoid the estimator windup, it 

does not guarantee that P stays bounded. Therefore, as a precaution, updating 

of the parameters and the covariance matrix are stopped whenever the process 

excitation is low or the estimation error is sufficiently small. 

In continuous adaptation of the process parameters, a range of acceptable pa­

rameters was given to the algorithm. This range in our experimentation was 

between the values of 2 and 7 for all parameters. Although the actual variations 

the system parameters were less than the range given above, as explained in 

Section 6.2, it was felt that providing a wider range could prevent the estimation 

algorithm to from frequently switching to the values given in Eq. 4.35. 

In continuous adaptation of process parameters, a problem particular to our 

system was also observed. Input commands (serial line throttle valve com­

mands) less than or equal to 5 were sometimes not transferred to the throttle 

valve actuator due to an error in the RS-232 data communication line. It caused 

severe problems in the parameter estimation algorithm since no actual input is 

applied to the system although the computer assumes input signals are applied. 

To work around this problem, the input commands of the actuator were set to 

zero whenever the calculated absolute value of the throttle valve input com­

mand is less than 5. However, controlling torque values close to their desired 

trajectories becomes very difficult since input commands with small magnitudes 

are not allowed in the closed-loop system. In adaptive control with one-shot 

estimation and controller design, these problems do not exist due to the nature 

of the problem. 
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• Sampling rate selection: The choice of sampling period is discussed in great 

detail by Astrom and Wittenmark [43]. The sampling rate for the estimation 

algorithm used in this study was set to 50 Hertz. Unlike discrete-time param­

eter estimation, using a high sampling rate will improve the performance of 

the continuous time parameter estimation algorithm. This can be noted as an­

other advantage of continuous-time estimation. It is suggested in Astrom and 

Wittenmark that the sampling rate for a closed-loop control system should be 

chosen to provide two to three samples during the rise time. In Section 5.3 it 

was mentioned that the desired closed-loop system should have a time constant 

of 0.25 second. This yields a rise time of about 0.6 second. Based on this rise 

time a sampling rate around 5 Hertz seems reasonable for our closed-loop sys­

tem. Another consideration for the selection of sampling period is the amount 

of time delay in the system. In order to get full use of the Smith predictor, 

the ratio of the sampling time to time delay should be an integer number. For 

continuous update of parameters, the time delay was found to be 0.4 seconds 

from previous experiments, and therefore a fixed sampling period of 0.2 sec­

onds was selected. However, for the one shot estimator and controller design 

algorithm, the time delay estimation was carried out on-line. Therefore, the 

sampling period was also calculated on line, and allowed to lie in the region of 

0.15 to 0.30 seconds, depending on the value of the estimated time delay. This 

was another flexibility that the one-shot adaptive control algorithm provides. 

A limitation for the maximum sampling rate came from the actuator hardware. 

It was not possible to send commands to the actuator microprocessor at a rate 

higher than 7 Hertz. However, this did not cause a severe limitation in the 
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sampling rate selection. 

• Anti-aliasing filter: To avoid aliasing problems it is necessary to use an ana­

log prefUter to eliminate disturbances with frequencies higher than the Nyquist 

frequency associated with the sampling rate. High frequency signals may other­

wise be mis-interpreted as low frequency signals and may introduce disturbances 

in the closed loop system. The bandwidth, w^, of the prefilter is suggested to 

be inversely proportional to the sampling period. A rule of thumb is given as 

wgT = 0.5 — 1 [38]. There are four user selectable analog prefilters on the ana­

log torque sensor of the engine and dynamometer system used for this study. 

The bandwidths of these filters are found as 1.45, 6.5, 200, and 2000 rad/sec, 

respectively. Selecting the filter with bandwidth of 1.45 rad/sec is sufficient in 

our application considering a sampling period of 0.15-0.30 seconds. 

• Antireset windup: Since the pole assignment algorithm includes an integra­

tor, reset windup can occur if the output saturates and the controller continues 

to integrate the error. Therefore, an antireset windup algorithm is employed in 

the software. It is done by stopping the updating of the integrator when the 

controller output is limited. 

5.7 Software Description 

Three separate Fortran programs were written to cover the self-tuning control 

with one-shot estimation and controller design, the self-tuning gain-scheduling control 

with multiple one-shot estimation and controller designs, and the adaptive regula­

tor with continuous update of process and controller parameters. To improve the 
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readability of the software, the programs are composed of subroutines where each 

subroutine performs a specific task. The program listings for the self-tuning algo­

rithm with one-shot estimation and controller design, and for adaptive regulator are 

given in Appendix C. Organization of the software is shown in Figure 5.6. Each 

subroutine is described briefly below. 

• Main program: Communicates with subroutines, reads torque and speed 

trajectories from an external data file, determines the sampling period based 

on the estimated time delay, performs some safety check-ups, performs closed-

loop torque control and provides reference speed trajectories for the General 

Electric speed controller, and stores the torque and speed readings during the 

transient test cycle and writes them to an external data Ale. 

• Subroutine Start: Starts-up the engine and dynamometer. Brings engine 

speed to idle speed (1200 rpm), and slowly moves the throttle valve until a 

reading of 0 ft-lbs is achieved. 

• Subroutine Stop: Shuts-down the engine and dynamometer pair. First brings 

the throttle valve to closed-rack position, then brings the engine to a full stop 

(0 rpm). 

• Subroutine Ident: Performs two open-loop step response tests for the iden­

tification of reference speed-torque and throttle-torque systems. Takes data at 

50 Hertz sampling rate for 5 seconds during open-loop tests, and stores them 

to be used later in the parameter estimation algorithm. 

• Subroutine Rarest: Performs system and parameter identification for both 

speed-torque and throttle-torque systems. Selects six different models and tries 
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to find the best model that gives minimum sums of squares of error. Time delay 

estimation is also included as a part of the identification problem. 

Subroutine Modell—ModelG: Using a recursive least squares approach cou­

pled with the PMF method, these subroutines tried to find the parameters of 

the assumed models and time delays. Return sums of squares of errors for each 

model. Considered models are: 

- First order system (Modell) 

- Second order system (Model2) 

- Second order system with first order numerator dynamics (Models) 

- Third order system (Model4) 

- Third order system with first order numerator dynamics (ModelS) 

- Third order system with second order numerator dynamics (Model6) 

Subroutine Convertl-Convert6; This set of subroutines discretizes the "s" 

domain transfer functions to obtain the "z" domain description of the system. 

Discrete-time transfer functions are needed in the pole-assignment controller 

and feedforward compensator design. 

Subroutine Tustin24-34-44-35-45-55: Discretize the "s" domain transfer 

functions to obtain the "z" domain description of the system when the order 

of the system is greater than three. The first number is the numerator order 

and the second number is the denominator order of the "s" domain transfer 

function. It uses the Tustin approximation to discretize the continuous-time 

system. 
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Subroutine Design: This subroutine communicates with the user. It gives 

information about the parameter estimation results, and asks the user which 

controller strategy should be applied. The user specifies the desired closed-

loop response, decides whether an integrator will be included as part of the 

controller, and decides whether zero cancellation is desired or not. 

Subroutine Feedcom: This subroutine designs the feedforward compensator. 

It first tries to develop a perfect cancellation compensator. If it is unstable or 

unrealizable then it uses different approximations as explained in Section 5.5. 

Subroutine ControIl-li-2ic-2i-2c-2-3ic-3i-3c-3: This set of subroutines 

perf o r m s  t h e  p o l e  a s s i g n m e n t  c o n t r o l l e r  d e s i g n .  I t  r e t u r n s  5 ' ( z ) ,  T ( c ) ,  a n d  R { z )  

to the main program. The numeric number shows the order of the selected 

discrete-time throttle-torque system. Existence of 'i' indicates that integral 

action is included as a part of the design. Existence of 'c' indicates that open-

loop zero cancellation is desired. 

Subroutine Roots: This subroutine finds the roots of a third order poly­

nomial. It is used in subroutines Converts, Convert4 and Converts, and in 

monitoring the convergence of the eigenvalues. 

Subroutine Rud: This subroutine performs recursive least-squares identifi­

cation. It updates the system parameters and the covariance matrix at each 

sampling point. It employs U — D factorization for the covariance matrix up­

date. 
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• Subroutine Forget: This subroutine calculates the forgetting factor recur­

sively. 
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6. RESULTS AND DISCUSSION 

The three proposed adaptive control algorithms were implemented on a Zenith-

386 microcomputer. Ten transient test cycles were run with each algorithm to validate 

the statistical properties of the results. These results are presented and discussed in 

this chapter. Section 6.1 to 6.3 present the results for the adaptive control strategies 

considered in this research. Section 6.4 compares the adaptive control approaches and 

comments on their advantages and disadvantages. Section 6.5 compares the conven­

tional constant-parameter non-adaptive control approach to the adaptive approaches 

studied in this research. Section 6.6 discusses the application of the proposed algo­

rithms to other systems. 

6.1 Self-Tuning Control with One-Shot Parameter Estimation and 

Controller Design 

As explained in the previous sections, in this method the complete system identi­

fication, including time-delay estimation, and controller and feedforward compensator 

designs were carried out on-line prior to the transient test cycle. 

For the John Deere diesel engine and General Electric DC Dynamometer used in 

this study, step change input signals of 1/8 inch movement of throttle rack and 100 

rpm change of reference speed command, were applied when the system was running 
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under idle conditions of zero torque and 1200 rpm. Table 6.1 gives the estimated 

parameters of the throttle-torque system for the six models considered, as discussed 

in Section 4.4, along with the estimated time delay Tj: for a particular run. In these 

models, the parameters aj, a2, and ag represent the denominator coefficients, and 

the parameters 6]^, 62, &nd 63 represent the numerator coefficients of the open-loop 

throttle-torque transfer function in the "s" domain. As can be seen from Table 6.1, 

case 5, which is a third order model with first order numerator dynamics, gives 

the minimum sum of squares. However, cases 2 and 3, second order models with 

and without numerator dynamics, also describe the throttle-torque model well since 

their sum of squares of error values are very comparable to case five. Table 6.2 

shows the zero and pole locations of the throttle-torque open-loop transfer function 

that corresponds to the models of Table 6.1. Table 6.2 suggests that one complex 

conjugate pole is dominant in the open-loop system response in all models, except 

the first order model, providing a damping ratio of approximately 0.9 and a natural 

frequency of approximately 2.1 rad/sec. Figure 6.1 compares the actual load torque 

output with the estimated third order model output for a step input of 1/8 inch 

movement of throttle rack while the speed reference command is kept .at 1200 rpm. 

It can be seen in Figure 6.1 that the model closely estimates the actual input-output 

behavior. 

Table 6.3 gives the estimated parameters of the speed-torque system for each 

model considered along with the estimated time delay for a particular test. Case 

5, which is a third order model with first order numerator dynamics, again gives the 

minimum sum of squares among all 6 cases considered. Again cases 2, 3, and 6 are also 

acceptable candidates for the speed-torque process description. Figure 6.2 compares 
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Table 6.1: Estimated parameters of throttle-load torque system for 6 different mod­
els 

Case *1 n  «3 h  h  ^3 SSE^ 

1 1 0.60 1.29 1.81 2502 
2 2 . 0.42 3.86 4.69 — 6.29 — — 355 
3 2 0.42 3.68 4.45 — 0.06 5.94 — 351 
4 3 0.38 20.22 71.87 85.45 112.04 — — 1267 
5^: 3 0.38 4.16 8.24 5.18 4.73 7.00 — 336 
6 3 0.52 5.76 16.94 18.07 1.05 5.07 23.96 682 

® Model order. 

^Sum of squares of errors between actual output and model output 
^Selected model. 

Table 6.2: Estimated pole-zero locations of throttle-load torque system for 6 differ­
ent models 

Case Pole locations Zero locations 

1 -1.29 — 
2 -1.93 ±0.98; — 
3 -1.84 ±1.03; -99 
4 -16.0, -2.07 ± 1.01; — 
5 -1.03,-1.59 ± 1.56; -1.47 
6 -1.86, -1.95 ± 2.42; -2.41 ± 4.25; 
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Figure 6.2: Comparison of actual and predicted responses due to a step input to 
the speed reference command 
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the actual load torque output with the estimated third order model output for a step 

input of 100 rpm change in the speed reference command while the throttle rack 

position is kept constant. As seen in Figure 6.2, the third order model very closely 

approximates the actual open-loop speed-torque system. Table 6.4 shows the zero 

and pole locations of the speed-torque open-loop transfer function that corresponds 

to the models of Table 6.3. Table 6.4 suggests that one complex conjugate pole 

is dominant in the open-loop system response in all models, except the first order 

model, providing a damping ratio of approximately 0.7, and a natural frequency 

of approximately 2.7 rad/sec. Figure 6.2 compares the actual load torque output 

with the estimated load torque output for a step change of 100 rpm speed reference 

command while throttle rack position is kept constant. Both Figures 6.1 and 6.2 

show that the continuous-time PMF parameter identification method yields system 

parameters which accurately describe the input-output relation, despite the noise in 

the torque measurements. In both throttle-torque and speed-torque models a first 

order system approximation was not found suitable due to the very large sum of 

squares between actual system output and model output. 

This particular control technique offers the option of either cancelling the process 

zeros or not cancelling the zeros during the controller design. Ten EPA transient cycle 

tests were conducted for each case so that the performance could be compared for 

each option. All the transient test cycles, when open-loop process zeros were included 

in the desired closed-loop transfer function, were found to be valid according to the 

Environmental Protection Agency (EPA) specifications. However, only six of the 

ten transient test cycles were found to be valid under the EPA regulations when 

zero cancellation was employed in the controller design. Table 6.5 and Table 6.6 
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Table 6.3: Estimated parameters of reference speed-load torque system for 6 differ­
ent models 

Case n« T d  ai «2 «3 &1 h  h SSE& 

1 1 0.60 2.51 2.22 3112 
2 2 0.42 3.55 7.26 — 6.21 — — 224 
3 2 0.44 3.59 7.37 — 0.10 6.31 — 225 
4 3 0.34 13.32 41.54 75.32 63.42 — — 548 
5^ 3 0.40 3.49 8.18 3.23 5.32 2.89 — 149 
6 3 0.44 4.01 10.03 7.66 0.26 5.29 6.63 154 

^Model order. 

^Sum of squares of errors between actual output and model output. 
^Selected model. 

Table 6.4: Estimated pole-zero locations of speed-load torque system for six different 
models 

Case Pole locations Zero locations 

1 -2.51 — 
2. -1.77 ± 2.03; — 
3 -1.79 ± 2.04; -63.1 
4 -9.98, -1.71 ± 2.16; — 
5 -0.48,-1.50 ±2.11; -0.54 
6 -1.13,-1.44 ±2.16; -1.29,-19.05 
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give average values of the regression line parameters for each of the two cases listed 

above. In addition to the mean values, the standard deviations of the parameters are 

also listed in these tables. Standard error of estimate {SE), slope (m), coefficient 

of determination (r^), intercept (6), and their standard deviations 

and (T^) are given in these tables for the speed, torque, and brake horsepower (BHP) 

regression line analyses. 

It is desired that the slope (m) and coefficient of determination (r^) be as close 

as possible to one, and the standard error of estimate { S E )  and intercept (6) should 

be as close as possible to zero for a perfect transient test cycle. By direct comparison 

of Table 6.5 and Table 6.6, it can be said that better results were obtained when the 

process zeros were not cancelled. Approximately 30-35% improvements on the slope 

and coefficient of determination values of the torque and brake horsepower regression 

line were obtained when the process zeros were cancelled. This is due to the fact 

that canceling underdamped process zeros caused ringing in the input signal and also 

required input signals with higher amplitudes. Therefore, any mismatch between 

actual system parameters and estimated model parameters gave rise to a less-stable 

system. For example, in a sample transient test cycle, the following throttle-torque 

plant description was obtained: 

B { z )  0.081Z +0.064 

4(z) ~ ^2 _ 13892 + 0.502 

The throttle-torque open-loop system shown above contains a zero located at z = 

—0.79, which can be considered as an underdamped zero. In the zero cancellation 

case, the desired closed-loop transfer function , as suggested in Section 5.5, becomes: 

Bm{z) (1 — a)^z^ 

A m { z )  { z  —  a ) 2  
(6.2) 
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Table 6.5: Regression line values for one-shot self-tuning control without zero can­
cellation 

Speed Torque BHP 

35.6 rpm, 0.26 rpm 18.2 ft-lb, 1.01 ft-lb 6.0 BHP, 0.42 BHP 

m, (Tjn 0.996, 0.0002 0.960, 0.0086 0.950, 0.0090 

2 0.991, 0.0001 0.923, 0.0092 0.930, 0.0100 

3.20 rpm, 0.38 rpm • -1.66 ft-lb, 0.28 ft-lb -0.34 BHP, 0.08 BHP 

Table 6.6: Regression line values for 
lation 

one-shot self-tuning control with zero cancel-

Speed Torque BHP 

SE,or SE 35.6 rpm, 0.27 rpm 22.3 ft-lb, 6.06 ft-lb 7.4 BHP, 2.03 BHP 

m, (Tm 0.996, 0.0001 0.943, 0.0210 0.940, 0.0184 

V 0.991, 0.0001 0.880, 0.0627 0.893, 0.0560 

b ,  T h  4.61 rpm, 0.43 rpm -2.47 ft-lb, 1.06 ft-lb -0.67 BHP, 0.37 BHP 
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where a  =  r = 0.25 second, and T = 0.2 second. The following controller 

polynomials were obtained following the steps of the pole-zero assignment algorithm 

given in Section 5.3: 

Rc{ z )  = - 0.205% - 0.795 (6.3) 

Sc{ z )  =  10.52z^ - 13.642 + 4.55 (6.4) 

Tc( z )  = 2.93z^ - 1.51z (6.5) 

where 'c' subscript refers to the zero cancellation design. The above controller was 

implemented and the resulting transient test cycle did not satisfy the EPA regression 

line specifications. Figure 6.3a shows the computer simulation of the response of the 

closed-loop system to a reference input with a magnitude of one when the open-loop 

process zeros were cancelled in the controller design. Figure 6.3b shows the controller 

output signals (input signals to the throttle actuator) in this simulation. 

Second, the controller design was carried out when zero cancellation was avoided. 

When process zeros are not cancelled, the desired closed-loop transfer function be­

comes: 
B m j z )  _  ( 1  -  f f l ) ^  B ( z )  

A m i ^ )  B { 1 )  (z — a)2 

where B{z) and a have the same values as the zero cancellation case. Following the 

pole-zero assignment algorithm the controller polynomials were found to be: 

R { z )  =  z ^  -  0.934: - 0.066 (6.7) 

S { z )  =  3.3482^-4.5582 -M.597 (6.8) 

T { z )  =  1.6352^ - 1.6782 + 0.430 (6.9) 

The above controller was implemented and the resulting transient test cycle satisfied 
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the EPA specifications. Figure 6.4a shows the computer simulation of the response of 

the closed-loop system to a reference input with a magnitude of one when the process 

zeros were not cancelled in the controller design. Figure 6.4b shows the controller 

output signals (input signals to the throttle actuator) in this simulation. 

When the coefficients of S(c) and T { z )  are compared we can see that the zero 

cancellation case produces controller polynomials with larger coefficients. Compari­

son of Figure 6.3 and Figure 6.4 revealed that cancellation of the underdamped zero 

from the desired closed-loop transfer function caused ringing and larger amplitudes 

in the input signal. From the reasons discussed above, the zero cancellation in the 

pole-assignment algorithm was avoided in the rest of the tests with other control 

approaches. 

The observer polynomial zero locations were determined using the new pole-zero 

assignment algorithm described in Section 5.3. It was found that the observer zeros 

were located near to the closed-loop poles and varied from QQ = 0.3 to OQ = 0.5. 

To show the importance of this modified pole-assignment algorithm the following 

throttle-torque plant description, obtained on-line in a transient test cycle by the 

PMF algorithm, is provided as an example. 

B ( z )  0.075:^ -f- 0.00236% - 0.049 
•, , = -Ô Ô (6.10) 

.4(z) _ 2.245c2 4-i.7i7z - 0.450 

The following desired closed-loop transfer function was selected: 

Bm( = ) _ (1 - a)^:^ 

-4m(-) (z --

where a  =  T  =  0.2 second, and r = 0.25 second. First, all observer poles were 

intentioncdly placed at the origin, as suggested in most of the adaptive control liter­

ature, to give an observer polynomial of Ao{z) = z^. Following the pole-assignment 

( 6 . 1 1 )  
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controller design steps of Section 5.3, the parameters of the controller were found to 

be: 

R { z )  = + 14.25z^ - 3.13Z - 12.12 (6.12) 

5(r) = -180.55z^ +46.16;^- 387.59^ + 110.66 (6.13) 

T { z )  =  4.106z^ (6.14) 

The R { z )  polynomial shown above contains a root outside the unit circle at z — —14.4. 

Although the controller polynomials shown above produced the stable closed-loop 

transfer function, shown in Eq. 6.11, when the controller was implemented on the 

digital computer, the closed-loop system went to unstable operation within seconds 

of the start of the transient test cycle. 

Second, the modified pole-assignment algorithm was applied. In this case, the 

modified algorithm set all observer zeros to ao = 0.42 and came up with stable 

controller polynomials of: 

R * { z )  = z^ + 0.248Z2 - 0.256z - 0.991 (6.15) 

5*(z) = -10.69z^+ 31.73z^- 29.08Z + 8.85 (6.16) 

r*(z) = 4.106z^-5.174z2+ 2.173Z- 0.304 (6.17) 

where * denotes the modified controller polynomials. Now R * ( z )  contains all of 

its roots inside the unit circle. The above controller also produced the same desired 

closed-loop transfer function. Implementation of this controller resulted in a stable 

closed-loop operation and satisfied all of the EPA specifications. 

All the experiments with the one-shot parameter identification algorithm showed 

that the parameter convergence was fast. The parameters converged in less than 250 
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Figure 6.5; Convergence of the second^order model parameters with one-shot 
self-tuning control 

samples. Figure 6.5 shows the convergence of the parameters when a second order 

model was found to be the best fit. In the first one-second of the estimation the 

parameters were far away from their converged values, and for clarity, the whole 

scale for the parameters were not given in Figure 6.5. However, at three seconds, 

the parameters converged to their final values. The forgetting factor in the recursive 

least-squares estimation algorithm was set to 1.0 in the parameter convergence plot 

shown in Figure 6.5. 

Of the ten transient cycle tests, a second-order model was selected in eight of 

them, and a third order model was selected in the remaining two. However, the 

difference between the sum of square of errors of the second-order and third-order 

models were not significant, as seen from Table 6.1 and Table 6.3, therefore suggesting 
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that models higher than a third-order model was not needed. Variation of the model 

parameters from one test to another was also very small, showing the repeatability 

of the tests. The estimated time delay in each run was practically constant ranging 

from 0.36 to 0.44 seconds. The parameters of the selected model in each test is given 

in Appendix B. 

In all ten transient tests the zeros of the B { z )  polynomial were inside the unit 

circle, and therefore a perfect cancellation feedforward compensator was applied in 

all ten cases. The zero locations of B{z) varied between 0.3 and 0.8 in the z-plane. 

A significant portion of the software developed in this study was devoted to the 

development of a feedforward compensator when the zeros of the B{z) polynomial 

were outside the unit-circle in the z-plain. Therefore, a reduction in the software may 

be possible for our particular engine and dynamometer pair. However, in applying 

the algorithm to different systems, that reduction in software may not be suitable 

due to the possibility that the process zeros could lie outside the unit circle in the 

z-plane. 

To see the importance of the integrator in the controller, the pole-zero assignment 

algorithm was also carried out without including an integrator in the R(z) polynomial. 

The controller polynomials based on the process description of Eq. 6.10 became: 

R ( z )  = z - 0.07 (6.18) 

5(2) = -0.988Z-f 1.56 (6.19) 

T ( z )  = 2.93z - 1.51 (6.20) 

R ( z }  in the above equation does not include a zero at z = 1, and therefore no 

integral action is incorporated to the controller. This controller was implemented in 
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the engine and dynamometer system and the resulting transient test cycle did not 

satisfy the EPA specifications. An additional four tests, without incorporating an 

integrator into the controller, were performed and again none of them satisfied the 

EPA regulations. Therefore, it was concluded that an integrator was required in the 

controller for successful transient test cycling. The possible reasons why the cases 

without an integrator failed to give satisfactory results can be listed as: 

1. The integrator in the controller greatly reduced the effect of the low-frequency 

torque measurement noise in the closed-loop torque control system. 

2. If there were any unmodeled disturbances acting on the system, and if known 

load disturbance was not suitably compensated with a feedforward compen­

sator, then the integral action tried to remove the effects of these disturbances 

from the closed-loop response. 

3. Without an integrator, it was not possible to reach zero steady-state error with 

the pole-assignment algorithm unless the model was perfect. 

4. Although the Smith predictor has the advantage of compensating the time-

delay effectively, it has a disadvantage that the sensitivity of the closed-loop 

system to any mismatch between the actual system and the model parameters 

is higher than a classical feedback control system without a Smith predictor. 

Therefore, inclusion of the integrator in this case reduced the sensitivity of the 

overall system to errors in the parameter estimation. 

As a conclusion of this section it can be said that the self-tuning control with 

one-shot estimation and controller design gave satisfactory results all the time when 

the process zeros were not cancelled and an integrator was included in the controller. 
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6.2 Self-Tuning Gain-Scheduling Control with Multiple One-Shot 

Estimation and Controller Design 

In gain-scheduling control the parameter identification and controller design were 

carried out for five different speed ranges as explained in Section 4.4. Different oper­

ating conditions were defined based on the speed variations, not the torque variations, 

since the engine speed was the major nonlinearity as seen in Eq. 3.1. Ten transient 

test cycles were run. All of these tests satisfied the Environmental Protection Agency 

(EPA) regression line specifications. In nine of the tests a second order model was 

found to be the best fit, and in the remaining test a third order model was selected. 

Table 6.7 gives the average values of the regression line parameters obtained from 

these ten tests. 

Table 6.7: Regression line values for gain-scheduling self-tuning control 

Speed Torque BHP 

SE,crg^ 35.5 rpm, 0.29 rpm 18.5 ft-lb, 1.22 ft-lb 5.7 BHP, 0.38 BHP 

m, (Tm 0.996, 0.0003 0.970, 0.0146 0.977, 0.0115 

r2, <7^2 0.991, 0.0001 0.922, 0.0113 0.940, 0.0084 

b ,  a f j  2.6 rpm, 0.58 rpm -2.7 ft-lb, 0.38 ft-lb -0.81 BHP, 0.08 BHP 

Table 6.8 and Table 6.9 show how parameters of the throttle-torque and speed-

torque system are changed based on the different speed regions for one particular 

test. The time delays of the throttle-torque and speed-torque system were increased 

with increasing speed range. This was as expected since the describing function of 

the engine combustion system, as shown in Eq. 3.6, included a variable time delay 
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as a function of the engine speed. A close to linear change of the denominator 

parameters and 02) over the operating range, as seen in Tables 6.2 and 6.4, 

is a good justification for the implementation of a gain-scheduling control for the 

transient test cycle. Table 6.10 and Table 6.11 indicate the variations of the steady-

state gain {K = 62/(^2)) damping ratio = 02/2^/02), and the natural frequency 

{(jJn = y/cL^) over the engine speed range for the systems of throttle-torque, and 

speed-torque, respectively. The steady state gain and natural frequency in 

both systems increased with increasing engine speed. The damping ratio decreased 

with increasing speed in the throttle-torque system while it increased with increasing 

speed in the speed-torque system. Figure 6.6 and Figure 6.7 shows the comparison 

of the step responses of the open-loop systems for two extreme operating conditions 

for both throttle-torque and speed-torque systems. As seen in Figures 6.6 and 6.7 

there is a considerable difference in the responses of both the throttle-torque and 

speed-torque systems in two extreme speed ranges. Due to the black-box approach 

taken in the modeling of the GE dynamometer, a complete physical explanation of 

the parameter variations given in Tables 6.8-6.11 could not be obtained. However, 

the following can be said about the variations of the system parameters: 

• In Eq. 3.1, the engine speed appears as quadratic in the input side. Therefore 

increasing engine speed could result in the increasing gain of the speed-torque 

system. 

• In the throttle-torque system, the same movement of the governor speed lever 

position produces a higher fuel rate to the cylinders in the high speed range. 

Therefore, the steady state gain is expected to increase with increasing speed. 
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Table 6.8: Variation of the throttle-torque system parameters over different speed 
ranges 

Speed range H «2 h h SSE" 

1200-1400 rpm 0.42 3.68 4.28 0.09 5.28 344 
1400-1600 rpm 0.46 3.65 4.25 0.19 5.38 357 
1600-1800 rpm 0.48 3.62 4.21 0.16 5.50 351 
1800-2000 rpm 0.48 3.58 4.18 0.07 5.37 351 
2000-2200 rpm 0.52 3.32 3.99 0.14 5.36 335 

'^Sum of squares of error between actual output and model output. 

Table 6.9: Variation of the reference speed-torque system parameters over different 
speed ranges 

Speed range Td n n h h SSE® 

1200-1400 rpm 0.38 3.25 7.07 0.36 6.01 321 
1400-1600 rpm 0.42 3.50 6.89 0.12 5.35 169 
1600-1800 rpm 0.44 3.52 6.86 0.04 6.16 164 
1800-2000 rpm 0.46 3.93 6.25 0.21 6.94 310 
2000-2200 rpm 0.46 3.93 5.99 0.08 7.19 368 

"^Sum of squares of errors between actual output and model output. 
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Table 6.10: Variation of the steady state gain K ,  damping ratio and natural 
frequency u/n over different speed ranges for throttle-torque system 

Speed range K  e 

1200-1400 rpm 1.23 0.890 2.069 
1400-1600 rpm 1.26 0.885 2.061 
1600-1800 rpm 1.30 0.882 2.051 
1800-2000 rpm 1.28 0.875 2.044 
2000-2200 rpm 1.34 0.830 1.997 

Table 6.11; Variation of the steady state gain K ,  damping ratio and natural 
frequency (Mn over different speed ranges for speed-torque system 

Speed range K e wn 

1200-1400 rpm 0.85 0.611 2.659 
1400-1600 rpm 0.87 0.666 2.624 
1600-1800 rpm 0.89 0.672 2.619 
1800-2000 rpm 1.11 0.786 2.501 
2000-2200 rpm 1.20 0.803 1.442 
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Figure 6.6: Comparison of the step response of the throttle-torque system for two 
extreme operating conditions 
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Figure 6.7: Comparison of the step response of the speed-torque system for two 
extreme operating conditions 
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• The parameters of the describing equation of governor shown in Eq. 3.1 were as­

sumed to be constant. However, parameters like the viscous friction coefficient 

and total mass referred to the rotation axis in Eq. 3.1 are actually variable with 

engine speed. Those variations and the control law in the GE dynamometer 

controller could result in the variations of the throttle-torque and speed-torque 

systems. 

It will be shown later in this chapter that a constant-parameter controller can cope 

well with these variations in system dynamics, and therefore could provide valid 

transient test cycles without difficulty. However a gain-scheduling or a full adaptive 

regulator may provide better results than a constant parameter non-adaptive con­

troller since the controller parameters will be adjusted based on the estimate of the 

process parameters. The EPA, on the other hand, tightens its emissions regulations 

periodically, and with future regulations it could be possible that a constant parame­

ter non-adaptive controller may not provide sufficiently consistent results to reliably 

measure the engine emissions. If that becomes the case, then the application of the 

gain-scheduling or full adaptive regulator would be an alternative to non-adaptive 

torque control. 

All the observations explained in Section 6.1 were also valid for the gain-scheduling 

control. As in Section 6.1 the gain-scheduling control gave best results when an in­

tegrator was included as a part of the controller and when the open-loop process 

zeros were included in the desired closed-loop transfer function. However, to avoid 

abrupt parameter changes from one operating condition to another, a straight line-

interpolation was applied. It was observed that the regression line parameters were 

closer to the EPA specified values when straight line-interpolation was applied. 
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When the gain-scheduling control was employed, All the transient tests satisfied 

the EPA specifications. Since the gain-scheduling self-tuning control updates the 

controller parameters based on the variations in system dynamics, it is expected that 

it should give regression line parameters closer to the EPA specifications than the 

one-shot self-tuning control. Comparisons of these two approaches will be presented 

later in this chapter. 

6.3 Adaptive Regulator with Continuous Update of Process and 

Controller Parameters 

As explained in Section 4.5, a second order model with a time delay of 0.40 

seconds was selected for the adaptive controller with continuous update for both the 

throttle-torque and speed-torque systems. Ten transient test cycles were performed, 

but only six of the transient test cycles satisfied the EPA specifications. Table 6.12 

shows the average values of the regression line parameters obtained from these ten 

test cycles. Figure 6.3 shows how parameters of the system varied during the whole 

transient test cycle. In the implementation of the adaptive regulator, whenever the 

obtained system parameters were not within the prespecified range given in Section 

5.6, then the process and controller parameters were set to their estimated values as 

given by Eq. 4.35. 

Both a constant forgetting factor with values of 0.975, 0.99, and 0.999 and a 

variable forgetting factor due to Ydstin et al. [54], as discussed in Section 5.6, were 

used in the parameter estimation algorithm. It was found that the variable forgetting 

factor of Ydstin et al. [54] gave better parameter convergence, and it was used in the 

results presented in Table 6.12. 
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In Table 6.12 the standard error of the brake horsepower regression line (6.51 

BHP)is above the limit specified by the EPA (6.40 BHP). However, this is due to the 

inclusion of the four tests that did not satisfy the EPA specifications. The reasons 

why the adaptive regulator did not lead to valid test cycles all the time and why 

the regression line parameters were not better than other adaptive control strategies 

tested in this research will be given in the next section. 

Table 6.12: Regression line values for adaptive regulator 

Speed Torque BHP 

SE,(Tg^ .3.5.6 rpm, 0.04 rpm 20.4 ft-lb, 1.97 ft-lb 6.5 BHP, 0.70 BHP 

m, (Tm 0.996, 0.0002 0.982, 0.0028 0.977, 0.0033 

2 
^ ' %2 0.991, 0.0001 0.908, 0.0165 0.924, 0.0158 

6, <^h 0.3 rpm, 0.45 rpm -2.8 ft-lb, 0.38 ft-lb -0.78 BHP, 0.10 BHP 

6.4 Comparison of Adaptive Control Strategies 

Intuitively it would be expected that the self-tuning gain scheduling control 

should give better results than the self-tuning one-shot control, and similarly, the 

adaptive regulator should give better results than the self-tuning gain-scheduling 

control. Therefore, these comparisons will be shown separately. The regression line 

parameters obtained in each test with all three adaptive control approaches are given 

in Appendix B. 



www.manaraa.com

110 

0.4 0.6 0.8 

Time (Seconds) 

5 5 

0.4 0.6 0.8 

Time (Seconds) 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Time (Seconds) • 10 ^ 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

*Time (Seconds) • 10 ' 

Figure 6.8: Convergence of parameters during the whole transient test cycle 
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6.4.1 Gain-scheduling self-tuning versus one-shot self-tuning 

As discussed in Sections 6.1 and 6.2, both algorithms gave satisfactory results 

and they satisfied all of the EPA specifications in every transient test cycle. To be 

able to see whether gain-scheduling is better or not, some statistical measures were 

computed. The regression line parameters in both methods were compared with each 

other. Since the sample size was less than thirty, Student's t-statistic was applied to 

see if there was any significant difference between means [55]. In Student's t-test, the 

mean values of two groups are compared using the following formula: 

^ ^ 1^1 - Z2l (6.21) 

where xj and X2 show the mean values of the two groups to be compared. If calculated 

standard deviations of each group are crj and <T2 and the number of samples observed 

in each group are nj and 7%2, then (Tj in the equation shown above can be calculated 

as: 

+ (6.22) 
* ni + 712 — 2 ^l'^2 

If this calculated t  is greater than the tabulated value at the specified level of sig­

nificance, then it is concluded that the difference in means is statistically significant. 

Tabulated values of t for various levels of significance can be found in [55]. 

In our study, thë comparisons were made at the ten percent significance level. 

The results of the comparisons employing the Student's t-statistic showed that there 

was no significant difference between the means of the speed regression line values. 

This is as expected due to the fact that the speed control was governed by the GE 

Dynamometer Controller. In addition, the mean of the slope (m) of the torque re­

gression line was found to be significantly closer to 1.0 in the gain-scheduling control. 
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This indicates better torque control with gain-scheduling. This is also as expected 

since the controller parameters were continuously changed based on the operating 

conditions while the one-shot self-tuning control assumes the same process and con­

troller parameters for all operating conditions. The mean of the slope (m) of the brake 

horsepower regression line was significantly closer to 1.0, and the standard error of 

estimate {SE) value of the brake horsepower regression line was also significantly 

lower in the gain-scheduling control. This also indicates better torque control with 

gain-scheduling, and again this is what we expect from the gain-scheduling control. 

The improvements on the parameters of the torque and brake horsepower regression 

line were up to 35% with the gain-scheduling control. The means of all the other 

regression line parameters were not found to be different from each other at the the 

ten percent significance level. This could be due to the small sample size. 

From the comparisons above it can be concluded that the gain scheduling self-

tuning control gives closer values to the EPA regression line specifications than the 

one-shot self-tuning control. 

6.4.2 Adaptive regulator versus gain-scheduling control 

From the direct comparison of the results presented in Sections 6.2 and 6.3, it 

is not clear that the adaptive regulator gave better results than the gain-scheduling 

self-tuning control. In fact, in four of the ten transient test cycles, the adaptive 

regulator did not even lead to valid tests under the EPA regulations. Therefore this 

case represents a contradiction to the theory. 

There may be several factors that lead to the deteriorated performance with 

the adaptive regulator. In the gain-scheduling control the process parameters were 
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determined from the well-designed on-line open-loop tests. Therefore, the parameter 

convergence problems were minimized. However, in the adaptive regulator, the pro­

cess parameters were determined in closed-loop. Hence, there was no guarantee on 

the stability and convergence of the estimated parameters. 

Another point to be considered is that the parameters of the process transfer 

function vary continuously based on the operating conditions. During the transient 

test cycle, the time to go from one extreme operating condition to another extreme 

case is sometimes as low as two seconds. Therefore, it requires a very fast track­

ing of system parameters. Recursive parameter estimation algorithms work well if 

there is no noise in the system or the system parameters vary slowly. However, as 

stated in Chalam [32], recursively estimating rapidly varying parameters in a noisy 

environment is very difficult and subject to stability and convergence problems. 

Adaptive regulators also require minimum order of system description for best 

parameter convergence. The majority of the successful adaptive regulators reported 

in the literature employ a first order system as the process model. However, in our 

throttle-torque system, a first order model cannot adequately represent the input-

output behavior, and therefore a minimum of a second order model is needed. Thus, 

convergence problems become more serious with second order models. 

Adaptive regulators also require that the time delay in the system is known and 

constant over the operating range for better parameter estimation and better closed-

loop control. However, in the throttle-torque system studied in this research, the 

actual time delay varied based on the operating conditions although it was assumed 

constant in the estimation algorithm. This alone can cause convergence problems in 

the parameter estimation algorithm. 
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In addition to the concerns with the adaptive regulator listed above, there ex­

ists another problem particular to the torque control setup used in this study. As 

mentioned in Section 5.5, controller output signals of less than five units were not 

applied to the system due to some serial-line communication problems. This also 

deteriorated the closed-loop system performance. 

As a summary of this section, it can be concluded that the gain-scheduling self-

tuning control gave the best results among all three adaptive control approaches 

studied in this research. One-shot self-tuning control also gave good results, and 

it had the advantage of being computationally less complex than a gain-scheduling 

self-tuning control. Application of the full adaptive regulators, however, may not be 

recommended for the torque control of diesel engines operating over transient test 

cycles. 

6.5 Comparisons with Constant Parameter Non-Adaptive Controllers 

Tuken et al. [1] described the design steps of a conventional digital torque 

control system capable of following the EPA transient test cycle developed for the 

same engine and dynamometer pair used in this study. Controller and feedforward 

compensator designs and Smith predictor were carried out with methods similar to 

the ones explained in this dissertation. Table 6.13 shows the average regression line 

parameters of 24 transient test cycles reported in their study. 

To compare the regression line parameters in Table 6.13, obtained with conven­

tional non-adaptive control, with the regression line parameters in Table 6.7, obtained 

through the gain-scheduling control, the same statistical measures discussed earlier 

were used. Student's t-statistics, as explained in Section 6.4, were calculated to see if 
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Table 6.13: Regression line values for non-adaptive control 

Speed Torque BHP 

SE,crg^ 10.2 rpm, 0.25 rpm 17.5 ft-lb, 1.06 ft-lb 5.3 BHP, 0.30 BHP 

m, (Tm 0.990, 0.0001 0.940, 0.0210 0.950, 0.0184 

r^, <7^2 0.998, 0.0001 0.940, 0.0227 0.940, 0.0160 

b, (Th 14.9 rpm, 1.43 rpm -0.33 ft-lb, 0.16 ft-lb -0.2 BHP, 0.07 BHP 

any significant difference exists between the means of each parameter. The following 

results were obtained: 

1. The means of the slope (m) of the torque and brake horsepower regression line 

were significantly higher (up to 30%) in the gain-scheduling control. It means 

that better tracking of torque and brake horsepower reference trajectory was 

obtained when gain-scheduling control was employed. 

2. Only the standard error of estimate (SE) of the brake horsepower regression 

line was lower in the non-adaptive control case. 

3. All other parameters were not found to be statistically different from each other 

at the 10 percent significance level when (-test was employed. 

The above comparison indicates that the gain-scheduling control gives results as 

good as or better than the constant parameter controller. 
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6.6 Application of the Proposed Self-Tuning Control to Other Systems 

Of course, the small improvements in the regression line parameters are not a 

justification for employing a self-tuning controller. The main justification for the 

application of self-tuning control was the capability of controlling different engines, 

or the same engine with different components, without any prior design and testing. 

All the transient tests described in this dissertation were performed on the same 

engine and dynamometer pair described in Section 3.1. Although the best way to 

test the versatility of the self-tuning algorithms in this research would be to test the 

algorithm on different engine and dynamometer pairs, it was not possible due to the 

expense involved in obtaining different engine and dynamometer pairs. Instead, to 

give an example of why the self-tuning controller may be needed, the following two 

studies were performed: 

1. To test the self-tuning algorithm when changes in system components are made, 

the transient tests were performed on the engine after the turbocharger had 

been removed. The self-tuning control employing one-shot system identifica­

tion was employed. The resulting transient test was found to be valid under 

the EPA regulations. However, the parameters of the open-loop throttle-torque 

and speed-torque system did not vary significantly when the turbocharger was 

removed. Using the same constant parameter non-adaptive controller the tran­

sient test cycle was performed again, and the resulting test also satisfied the 

EPA regulations. Therefore, it was felt that this could not be considered a 

significant change in system components and dynamics since the engine in the 

consideration was very lightly turbocharged. However, it was still an example 
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of obtaining valid transient test cycles with self-tuning control. 

2. As explained in Section 5.5, an analog prefilter with a bandwidth of 1.45 rad/sec 

was used both in this study and in the design of the conventional constant-

parameter controller explained in Tuken et al. [1]. In the EPA transient test 

cycle, electronically filtering torque and speed measurements is allowed and the 

amount of filtering is left to the user. Therefore, to provide a significant change 

in overall system components and dynamics, the filter bandwidth was switched 

to 6.5 rad/sec. 

Figure 6.9 and Figure 6.10 show the effect of prefiltering on the open-loop 

response of the throttle-torque and the speed-torque systems, respectively. The 

describing transfer function of the throttle-torque system was found, employing 

the on-line recursive PMF identification algorithm, as: 

B { s )  _  8.80^ + 55.30 
i / \ — o (0.^*5 ) 

.4(s) a2 + 9.105 + 47.25 

This process description contains two poles located at —4.55±5.15j and a zero 

located at —6.28. Comparison of these values with the ones shown in Table 6.1 

and Table 6.2 show that a very significant change occurred in the system dy­

namics. The damping ratio and natural frequency of the throttle-torque plant 

are 0.66 and 6.85 rad/sec when an analog prefilter with a bandwidth of 1.45 

rad/sec is used, and 0.89 and 2.07 rad/sec when an analog prefilter with a 

bandwidth of 6.5 rad/sec, respectively. 

Similarly, the describing transfer function of the speed-torque open-loop system 

was found as: 
D { s )  39.945 -f 50.10 

Cs • 52 + 14.52 + 61.10 
(6.24) 
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The speed-torque process described above contains two poles located at —7.26± 

2.90j and a zero located at —1.25. Again there is a significant change in speed-

torque system dynamics when compared to the models in Table 6.3 and Ta­

ble 6.4. The damping ratio and natural frequency of the speed-torque plant are 

0.93 and 7.82 rad/sec when an analog prefilter with a bandwidth of 1.45 rad/sec 

is used, and 0.61 and 2.66 rad/sec when an analog prefilter with a bandwidth 

of 6.5 rad/sec, respectively. 

Transient test cycles were performed using both the constant parameter non-

adaptive controller, designed when the filter bandwidth was set to 1.45 rad/sec, 

and the one-shot self-tuning control, which uses no a priori information about 

the engine and dynamometer system. It was found that the conventional 

non-adaptive design produced an unstable closed-loop operation while the self-

tuning control was successfully implemented and the test results satisfied the 

EPA specifications. Therefore, the results of these tests proved that the de­

signed self-tuning control can be successfully applied to systems with dramati­

cally different dynamic characteristics. 
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Figure 6.9: The effect of prefiltering on throttle-torque open-loop system 
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Figure 6.10: The effect of prefiltering on speed-torque open-loop system 
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7. CONCLUSION 

The objectives of this project were to investigate the feasibility of using adaptive 

torque control to implement the EPA Federal Transient Test Cycle, to compare 

the performance of conventional and adaptive torque controllers, and to point 

out the implementation problems of using digital adaptive torque control for 

a diesel engine. The purpose of this chapter is to summarize the experimental 

results as they relate to the objectives and then to make recommendations for 

future research. 

7.1 Summary 

The original intention of this project was to design an adaptive torque control 

algorithm which could prevent an off-line system identification and controller 

design for each specific engine and dynamometer pair. A one-shot self-tuning 

control algorithm was developed for this purpose. Complete system identifica­

tion and controller design were carried out on-line prior to the transient test 

cycle in this method. A new pole-zero assignment algorithm was developed to 

prevent the overall closed-loop controller from unstable operation due to the 

practical implementation problems. A feedforward controller and Smith pre-
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clictor were used to compensate for the effects of load disturbances and time 

delay, respectively. Due to its superior noise rejection capability, a continuous-

time parameter identification algorithm, namely the Poisson Moment functioned 

(PMF) method, was employed. Six different models were considered in the al­

gorithm as the best possible candidates to describe the input-output behavior 

of the open-loop throttle-speed-torque system. Test results showed that either 

a second order or a third order model could closely approximate the actual 

system. Ten transient test cycles were performed with this method and all the 

tests satisfied the EPA specifications. The most significant feature of this algo­

rithm was shown to be the capability of controlling systems with dramatically 

different dynamic characteristics without requiring any prior knowledge about 

the system. Therefore, a significant time savings could be possible with this 

algorithm in engine test laboratories where different engine and dynamometer 

pairs need to be run over transient test cycles. 

Since linear models were used to approximate a nonlinear system, the parame­

ters of the selected model using the one-shot self-tuning algorithm varied with 

operating conditions. A gain-scheduling self-tuning control algorithm was de­

veloped to preserve the advantages of the one-shot self-tuning control and to 

compensate for the variations of the system parameters. In this method the 

selected model parameters and corresponding controller parameters were found 

on-line prior to the test cycle for each operating range employing multiple one-

shot identification and controller design. Again, ten transient test cycles were 

implemented using the gain-scheduling self-tuning control algorithm. All of 

these ten tests satisfied the EPA requirements. When compared to the basic 
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one-shot self-tuning control, the gain-scheduling self-tuning control provided 

improvements up to 35% on the parameters of the torque and brake horsepower 

regression line. The gain-scheduling self-tuning control also did not require any 

prior knowledge about the system dynamics, yet it provided better reference 

torque and brake horsepower trajectory tracking. 

Although the self-tuning gain-scheduling controller considered the variations in 

system dynamics, it did not update the controller and process parameters at 

each sampling instant. To provide better torque control, a full adaptive reg­

ulator was developed to continuously update the controller parameters based 

on the varying process parameters. However, it required that the time delay, 

model order, and estimate of the model parameters be known prior to the test 

cycle. Therefore, the motivation for the design of this algorithm was to provide 

better torque control for a particular engine and dynamometer pair. Due to the 

required prior knowledge about system dynamics, this algorithm was not ideal 

for testing different engine and dynamometer pairs. Ten transient test cycles 

were performed with this method. Only six of these ten tests satisfied the EPA 

requirements. Even in these six tests, the average values of the regression-line 

parameters were not better than either the gain-scheduling self-tuning controller 

or the one-shot self-tuning controller. The fast variation of system dynamics, 

the minimum order model requirement, constant time delay assumption, and 

the observed problems with serial line communication during the implementa­

tion of the test cycle were the main reasons for deteriorated performance with 

the full adaptive regulator. 

Comparisons with constant parameter non-adaptive controllers showed that the 
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gain-scheduling control provided improvements of up to 30% on the mean val­

ues of slope of the torque and brake horsepower regression line parameters. It 

was also shown in this research that the self-tuning regulator could be applied 

to systems with dramatically different dynamic characteristics while the con­

stant parameter non-adaptive controller, designed for a particular engine and 

dynamometer pair, could not control other engine and dynamometer pairs if 

there was a significant difference in the system dynamics. 

7.2 Recommendations for Future Work 

Although successful results were obtained with the self-tuning controller in the 

implementation of the EPA transient test cycles, there are several issues need 

to be addressed for better torque control and for closer tracking of the EPA 

regression line parameters. These can be listed as follows: 

(a) The self-tuning controllers designed in this dissertation did not consider 

the variation in the time delay over the entire operating range. This was 

due to the complexity of the on-line estimation of the time delay and 

the difficulty of practical implementation of a variable sampling rate as 

a function of the time-delay. However, better torque control and better 

tracking of the EPA regression line parameters could be obtained if the 

variation of the time delay were incorporated into the controller design 

algorithm. 

(b) In this research the adaptive regulator with continuous update of the pro­

cess and controller parameters did not lead to consistently valid transient 
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test cycles. The main reason was that the adaptive control required a 

minimum degree of system order due to the convergence properties of the 

estimation algorithm. The selection of a first order model was not possible 

in the engine and dynamometer pair considered in this study, and therefore 

a second order model was considered. However, a full adaptive regulator 

could provide satisfactory results if an engine and dynamometer pair were 

described by a first order model. Wellstead and Zanker [16] investigated 

the feasibility of the self-tuning controller to the speed control of a diesel 

engine whose transfer function was described by a first order model. They 

obtained satisfactory transient response with their self-tuning controller, 

but they did not deal with the torque control problem for the EPA tran­

sient test cycles. Therefore, before reaching a conclusion that the full 

adaptive regulator is not applicable to the transient test cycle implemen­

tation, some further study is required with an engine and dynamometer 

pair whose describing transfer function is first order. 
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APPENDIX A. DERIVATION OF THE RECURSIVE 

PARAMETER ESTIMATION EQUATIONS 

The derivation of the recursive parameter estimation equations is very similar in 

all the adaptive control strategies used in this research. Adaptive control with 

one-shot identification uses a single-input single-output model and parameter 

identification whereas the continuous adaptation of process and controller pa­

rameters requires a multiple-input single-output parameter identification. The 

following sections explain how to obtain continuous time parameters of a sys­

tem from discrete measurements of data when the Poisson Moment Functional 

(PMF) identification algorithm is employed. 

A.l SISO System Parameter Estimation 

The open-loop throttle-torque and speed-torque models are described in Section 

5.1 as shown in Figure 4.8. The following sections describe the development 

of recursive parameter estimation equations for each case considered. The first 

equation in each section gives the differential equation formulation of the sys­

tem. The PMF's of the first equation yields the second equation. The third 

equation is obtained by expanding the second equation using the identities given 
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in Table 4.1. The fourth equation in each section is obtained by arranging the 

third equation for parameter estimation purposes. 

* First order system: 

dT^ 

dt 
+ = biu 

Ml 
dt 

+ «1% [^L] = M 

TLQ -  = - T j  
IJ ai + [uiJèi 

* Second order system with no numerator dynamics: 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

d'^T dT 
^ + a i - ^  +  a 2 T £  = 6 i u  

% 
^d'^Ti 

dti-
+ aiMj^ 

dt 

dTi 
I  + « 2 %  [^l] = 

^ [^^1 ~ ^^2] "*• [^12] " [^2] 

* Second order system with first order numerator dynamics: 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

d^T T ((Tr du , 
-- + ai— + a2TL = ^ 1 — +  6 2 U  

Mk 
d^Ti 
A2 

^aiMk 

dt^ ' 

dTi 
dt 

+ «2^A: [^l] = h^k 
du 

dt 

(A.9) 

+ b2Mj^[u] (A.10) 

"^£2. "^^2 [^£2] = h Nl-•"21 + ̂ 2^2 (A.11) 



www.manaraa.com

132 

~ ^^^1 ^ ^ ~ ^^l] ^ ^ ̂ 1 ["1 ~ "2] + h [•"2] 

(A.12) 

* Third order system with no numerator dynamics: 

% 
d^Ti 

dt^ 

dti 

+ «1% 

d'^Tj dT T 
+ n-^ + n— + nTL = h 

dfl 

dt 

% 
dt 

(A.13) 

+ ®3% [^l] = ["] 

(A.14) 

TLQ -  3Î^Xi + 37^2 + hi - + (A.15) 

«2 F^2 - ̂ h\ + ®3^io = h'^z 

^Xq ~ ^^^1 ^ ̂ ^^2 ^ " "1 ["^^1 ̂  ~ + (A.16) 

«2 ^^3 - ̂^2] + ®3 + h ["3] 

Third order system with first order numerator dynamics 

d^Tr d^Tr dTr 
^ + 01-^+ «2-^+ «37^ = 61 

du 

dt 
+ 62^ (A.17) 

% d^Ti 

~d^ 
+ «1% 

du 

di 

W^Tr 

j(2 

+ ^2^fcM 

+ «2% 
dt 

+ «3% =(A.18) 

«2 ^^2 ~ ^h. "3^13 = ^1 [^2 - "3] + 62^3 



www.manaraa.com

133 

TLQ -  + 3T^2 + ^13 = °1 [-^Li + 2T^2 "" ^^3] + 

- ̂ ig] + h k2 - "3] + h kg] n 

Third order system with second order numerator dynamics 

d^T T <flTr dTr 
+ + <^2^ + n^L = h 

dti dt^ dt 
du 

Â2 
+ 62 

du 

H 
+ 63 (A.21) 

Mv 
dHi 
'dfi 

+ 
d^Tr 

d'^u 

dt^ 

dt^ 

+ 62% 

dTrl 

dt 
+ «3^^A; [^l] = (A.22) 

du 
dt + 63% M 

% -3Tz^+ 3Ti2 + Tij + «1 - 27^2 +^"43]+ (^-23) 

«2 - Ilj] + <"3^13 = h 1"! - 2»2 + "3! + '2 I«2 - "sl + 

% - 'Til + 3r£2 + Tig = «1 [-Tij + 27^2 - + (A.24) 

- ̂ ^2] ^ ["^£3] + ^1 ["^1 ~ 2^2 + "3] + 

h [-"2 - ̂3] + h [•"3] 

A.2 MISO System Parameter Estimation 

The multiple-input single-output (MISO) representation of the system is shown 

in Figure 4.6. The differential equation that describes the second order system 

is given by; 
d^Tr dTr 

(A.25) 
dt 

V dT 
Y+ n-^ + <^2^L = h'^ + '^l^ref 
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Taking the Poisson Moment Functional's of this equation, we find: 

% 
dt^ 

+ aiMk 
r ^ i  

dt 
+ 32% [Ti] = biM]^ [u] + +ciM)^ 

(A.26) 

Substituting Eq. 4.9 into Eq. A.26 results in; 

~ ^ '^h ̂  ~ ^ ^ + ci^re/g (^ 27) 

Finally arranging Eq. A.27 for parameter estimation purpose, we come up with: 

^ZQ ~ ^ ~ ^^1. ^ "2 [^2] + CI [^re/2] 

(A.28) 
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APPENDIX B. TABULATED DATA 

This Appendix contains tabular listings of the experimental data reported in 

this thesis. Table B.l and Table B.2 show the variations of the throttle-torque 

and speed-torque model parameters in the ten transient test cycles when the 

one-shot self-tuning control was employed. Tables B.3-B.6 show the torque and 

brake horsepower regression line parameters in the ten transient test cycles for 

all three adaptive control strategies reported in this research. 
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Table B.l: Estimated parameters of throttle-load torque system for 10 transient test 
cycles 

Case n^ ai «2 «3 ^1 h h SSE^ 

2 2 0.38 3.58 4.06 5.18 357 
2 2 0.42 3.88 4.54 — 5.74 — 393 
3 2 0.44 3.63 4.30 — 0.15 5.56 — 357 
3 2 0.44 3.80 4.36 — 0.25 5.64 — 330 
3 2 0.44 3.41 4.00 — 0.43 5.14 — 316 
3 2 0.42 3.59 4.15 — 0.15 5.35 — 317 
3 2 0.38 3.39 3.78 — 0.16 4.87 — 384 
3 2 0.44 3.74 4.42 — 0.20 5.66 — 341 
5 3 0.38 4.16 8.24 5.18 4.73 7.00 — 336 
5 3 0.44 3.98 7.19 3.92 4.55 5.21 — 267 

®Model order. 

^Sum of squares of errors between actual output and model output. 

Table B.2: Estimated parameters of speed-load torque system for 10 transient test 
cycles 

Case n^ Tf a-^ 02 «g 6% 62 ^3 SSE^ 

2 2 0.40 3.17 7.07 5.84 _ _ 170 
2 2 0.38 3.12 6.54 — 5.47 196 
2 2 0.40 3.40 7.03 — 6.20 270 
3 2 0.40 3.24 6.56 — 0.05 5.53 — 185 
3 2 0.44 3.12 6.28 — 0.68 5.08 — 194 
3 2 0.44 2.68 5.86 — 0.52 4.68 — 203 
3 2 0.44 3.49 7.74 — 0.08 6.33 — 253 
3 2 0.44 3.12 6.85 — 0.41 5.47 — 175 
5 3 0.40 3.49 8.18 3.23 5.32 2.89 — 149 
5 3 0.42 3.49 8.15 5.56 4.45 4.87 — 288 

®Model order. 

^Sum of squares of errors between actual output and model output. 
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Table B.3: Variation of the slope in three adaptive control strategies 

Torque Regression Line 

One-Shot Gain-Scheduling Fully Adaptive 

0.9589 6.9891 0.9831 
0.9746 0.9685 0.9795 
0.9682 0.9739 0.9835 
0.9.513 0.9563 0.9819 
0.9473 0.9608 0.9789 
0.9607 0.9432 0.9808 
0.9653 0.9874 0.9851 
0.9535 0.9848 0.9779 
0.9762 0.9836 0.9801 
0.9608 0.9742 0.9864 

Brake Horsepower Regression Line 

One-Shot Gain-Scheduling Fully Adaptive 

0.9502 0.9948 0.9791 
0.9654 0.9732 0.9713 
0.9598 0.9405 0.9793 
0.9425 0.9674 0.9788 
0.9363 0.9700 0.9746 
0.9493 0.9544 0.9755 
0.9522 0.9854 0.9810 
0.9547 0.9889 0.9804 
0.9430 0.9857 0.9741 
0.9643 0.9869 0.9728 
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Table B.4: Variation of the standard error of equation in three adaptive control 
strategies 

Torque Regression Line 

One-Shot Gain-Scheduling Fully Adaptive 

17.624 21.043 19.348 
17.181 17.143 23.762 
16.911 18.605 22.119 
19.139 20.011 19.706 
19.999 19.631 19.181 
18.183 20.070 20.211 
18.275 18.942 18.599 
17.192 16.855 18.346 
18.565 18.400 22.902 
15.821 17.385 21.697 

Brake Horsepower Regression Line 

One-Shot Gain-Scheduling Fully Adaptive 

5.908 6.385 6.216 
5.583 5.207 7.869 
5.542 5.754 7.081 
6.395 6.163 6.329 
6.343 6.161 6.026 
6.120 6.190 6.317 
6.101 5.861 5.850 
5.745 5.231 5.785 
6.273 5.762 7.108 
5.202 5.493 6.950 
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Table B.5: Variation of the coefficient of determination in three adaptive control 
strategies 

Torque Regression Line 

One-Shot Gain-Scheduling Fully Adaptive 

0.9274 0.9051 0.9176 
0.9328 0.9323 0.8800 
0.9339 0.9220 0.8951 
0.9142 0.9079 0.9183 
0.9064 0.9118 0.9104 
0.9233 0.9050 0.9238 
0.9226 0.9194 0.9146 
0.931.5 0.9367 0.9256 
0.9192 0.9251 0.8872 
0.9426 0.9343 0.8980 

Brake Horsepower Regression Line 

One-Shot Gain-Scheduling Fully Adaptive 

0.9337 0.9298 0.9312 
0.9422 0.9501 0.8925 
0.9424 0.9405 0.9125 
0.9221 0.9307 0.9288 
0.9108 0.9311 0.9345 
0.9292 0.9284 0.9265 
0.9299 0.9391 0.9387 
0.9377 0.9512 0.9413 
0.9249 0.9416 0.9110 
0.9493 0.9462 • 0.9144 
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Table B.6: Variation of the intercept in three adaptive control strategies 

Torque Regression Line 

One-Shot Gain-Scheduling Fully Adaptive 

-1.455 -3.844 -2.746 
-2.125 -2.412 -3.756 
-2.018 -2.506 -2.799 
-1.684 -2.216 -2.528 
-1.260 -2.157 -2.454 
-1.509 -1.980 -2.747 
-1.725 -2.854 -3.118 
-1.766 -2.877 -2.770 
-1.428 -3.159 -2.886 
-1.959 -2.667 -2.797 

Brake Horsepower Regression Line 

One-Shot Gain-Scheduling Fully Adaptive 

-0.309 -1.097 -0.7.52 
-0.477 -0.699 -1.022 
-0.458 -0.749 -0.777 
-0.339 -0.721 -0.723 
-0.223 -0.679 -0.661 
-0.409 -0.779 -0.779 
-0.291 -0.888 -0.812 
-0.361 -0.791 -0.754 
-0.362 -0.900 -0.841 
-0.298 -0.668 -0.743 
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APPENDIX C. COMPUTER PROGRAMS 

The software developed for the implementation of the Environmental Protection 

Agency (EPA) transient test cycles is given in this chapter for the cases of the 

self-tuning control with one-shot estimation and the adaptive regulator. The 

program listing for the self-tuning control with gain-scheduling is very similar to 

the self-tuning control with one-shot estimation, and therefore it is not included. 

C.l Program Listing for Self-Tuning Control with One-Shot 

Parameter Estimation and Controller Design 

PROGRAM ONESHOT 

INTEGER*] ERSTAT;LCHAN.BOARD,COUNT.PCHAN.LCHANl 

INTEGER*] CHA(0:3),PV0LT(3).ERCODE 

INTEGER*! CARR 

CHARACTER*9 FILEN,STEP,STEPP,STEPS,STO 

r0al*4 th0tap(6),thetad(6) 

DIMENSION A(15),B(15),Y(15),T(15),C0N(15),C(15) 

DIMENSION Yl(15),DE(15),C0N1(15),DIS(15).DS(0:1200) 

DIMENSION SPEED(1201),SPREF(1200),T0RREF(12OO),TR(1200) 

DIMENSION T0RQUE(12OO),TIME(1200),ER1(15),ER2(15).ER3(15) 

DIMENSION ER4(15) 

DATA CARR /1*13/ 

CHA(0)=3 

CHA(1)=0 
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100 

50 

999 

CHA(2)=1 

CHA(3)=2 

LCHAN=1 

LCHAN1=2 

B0ARD=1 

C0UNT=3 

PCHAN=0 

ERSTAT=0 

CALL INIT(ERSTAT) 

IF(ERSTAT.NE.O) GO TO 6fi6 

CALL AIG820 (LCHAN,BOARD,CHA,COUNT.ERSTAT) 

CALL AOT820 (LCHANl.BOARD,PCHAN,ERSTAT) 

STEP=' + ' 

STEPP=' - ' 

STO=' 

WRITE(* 

WRITE(* 

WRITE(* 

WRITE(* 

WRITE(* 

WRITE(* 

WRITE(* 

WRITE(* 

WRITE(* 

WRITE(* 

WRITE(* 

WRITE(* 

***************************************************' 

SPEED AND TORQUE CONTROL OF A DIESEL ENGINE 

* 

* 

* 

SELECT ONE OF THE ITEMS BELOW: * 

1)START-UP THE ENGINE/DYNO * 

(SPEED ~ 1200 RPM, TORQUE " 70 lbft2)» 

2)TRANSIENT ENGINE CYCLE * 

3)SHUT-DOWN THE ENGINE/DYNO * 

4)EXIT * 

* 

*************************************************** 

READ(*,*) ISELE 

IF(ISELE.EQ.l) CALL START(ERCODE) 

IF(ISELE.EQ.2) GO TO 50 

IF(ISELE.EQ.3) CALL STOP 

IF(ISELE.EQ.,4) GO TO 6 

IF(ERCODE.EQ.1.0) GO TO 6 

GO TO 100 

0PEN(UNIT=4,FILE='INPUTDOC',STATUS='OLD') 

DO 999 J=l,1199 

READ(4.*) SECT.SPREF(J),TORREF(J) 

CLOSE(UNIT=4) 

DO 998 J=1.1199 

SPREF(J)=9.0*SPREF(J)+1200.0 
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IF(SPREF(J .LT 1400 0) T0RREF(J)=T0RREF(J)*2.15 

IF(SPREF(J .LT 1400 0) GO TO 997 

IF(SPREF(J .LT 1700 0) T0RREF(J)=T0RREF(J)*2.05 

IF(SPREF(J .LT 1700 0) GO TO 997 

IF(SPREF(J .LT 1900 0) T0RREF(J)=T0RREF(J)*2.O 

IF(SPREF(J .LT 1900 0) GO TO 997 

IF(SPREF(J .LT.2100 0) TORREF(J)=TORREF(J)*1.9 

IF(SPREF(J .LT 2100 0) GO TO 997 

IF(SPREF(J .LT.2150 0) TORREF(J)=TORREF(J)•!.8 

IF(SPREF(J .LT 2150 0) GO TO 997 

IF(SPREF(J .LT 2175 0) T0RREF(J)=T0RREF(J)*1,7 

IF(SPREF(J .LT 2175 0) GO TO 997 

IF(SPREF(J .LT 2190 0) T0RREF(J)=T0RREF(J)*1.55 

IF(SPREF(J .LT 2190 0) GO TO 997 

IF(SPREF(J .LT 2200 0) TORREF(J)=TORREF(J)*1.40 

IF(SPREF(J .LT 2200 0) GO TO 997 

TORREF(J)=TORREF(J)*1.30 

997 IF(TORREF(J).LT.0.0) TORREF(J)=-20.0 

998 CONTINUE 

SPREF(1200)=SPREF(1199) 

TORREF(1200)=TORREF(1199) 

TR(1)=T0RREF(1) 

TR(1200)=T0RREF(1200) 

DO 994 J=2,1199 

TR(J)=TORREF(J) 

IF(SPREF(J+1).EQ.SPREF(J)) GO TO 994 

IF(TORREF(J).LT.0.0) GO TO 994 

TORREF(J)=TORREF(J)-0.2748081»(SPREF(J+1)-SPREF(J-1)) 

994 CONTINUE 

DO 996 J=l,1200 

996 DS(J)=SPREF(J)-SPREF(1) 

ds(0)=ds(l) 
CALL IDENT(THETAP,THETAD,NNUM,NDEN.NDNUM.NDDEN,KP,KD) 

IF(KP.GE.l) KDEL=0 

IF(KP.GE.6) KDEL=1 

IF(KP GE.14) KDEL=2 

IF(KP.GE.26) KDEL=3 

IF(KP.GE.l) FSAMPLE=5.0 

IF(KP.GE.6) FSAMPLE=7.0 

IF(KP.GE.8) FSAMPLE=6.0 
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IF(KP.GE.IO) FSAMPLE=5.0 

IF(KP.CE. 12) FSAMPLE=4.0 

IF(KP.GE.14) FSAMPLE=7.0 

IF(KP.GE.16) FSAMPLE=6.0 

IF(KP.GE.19) FSAMPLE=5.d 

IF(KP.GE.23) FSAMPLE=4.0 

IF(KP.GE.26) FSAMPLE=6.0 

IF(KP.GE.29) FSAMPLE=5.0 

H=1.0/FSAMPLE 

CALL DESIGN(THETAP.THETAD,NNUM.NDEN,NDNUM,NDDEN,H,B1,B2,B3, 

@A1,A2,A3,BD1,BD2,BD3,ADl,AD2,AD3,NCN,NCD,CBl,CB2,CB3,CB4,CB5, 

(aCB6,CAl.CA2,CA3,CA4,CA5,Rl,R2.R3,S0,Sl.S2,S3,T0,Tl,T2.T3) 

write(*,») 'DO YOU WANT ERROR FEEDBACK ONLY: (T=S)' 

WRITE(*,*) ' 1=YES 2=N0' 

READ(*,*) lEF 

write(12,*) 'DO YOU WANT ERROR FEEDBACK ONLY: (T=S)' 

WRITE(12,*) ' 1=YES 2=N0' 

WRITE(12,*) lEF 

IF(IEF.Eq.l) THEN 

TO=SO 

T1=S1 

T2=S2 

T3=S3 

END IF 

DO 995 J=l,5 

ER2(J)=0.0 

ER3(J)=0.0 

ER4(J)=0.0 

T(J)=0.0 

Y1(J)=0.0 

CON(J)=0.0 

C(J)=0.0 

DE(J)=0.0 

DIS(J)=0.0 

B(J)=0.0 

ER1(J)=0.0 

• ER2(J)=0.0 

A(J)=0.0 

995 CONK J) =0.0 

ISS=0 
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IJ=0 

AVE=0.0 

IFSAHPLE=FSAMPLE 

WRITEC*,*) 'PRESS ANY NUMBER IF YOU ARE READY TO START' 

READ(*,*) GGG 

DO 31. J=l,10 

CALL AING(LCHAN.PVOLT.ERSTAT) 

31 AVE=AVE+PV0LT(2) 

AVE=AVE/10.0 

AVE=10.0*AVE/4095.0-5.0 

AVE=48.43213*AVE+0.404608 

Y(1)=AVE 

Y(2)=AVE 

Y(3)=AVE 

Y(4)=AVE 

Y(5)=AVE 

CALL SETTIM(0,0,0,0) 

334 DO 1 J=l,1199 

DO 1 JJ=6,5+IFSAMPLE , 

CALL AING(LCHAN,PVOLT,ERSTAT) 

A(JJ)=PV0LT(1) 

B(JJ)=PV0LT(2) 

A(JJ)=10.0*A(JJ)/4095.0-5.0 

B(JJ)=10.0*B(JJ)/4095.0-5.0 

A(JJ)=491.4704*A(JJ)+8.6656+5.0 

B(JJ)=48.43213*B(JJ)+0.4046 

C(JJ)=PV0LT(3) 

C(JJ)=10.0*C(JJ)/4095.0-5.0 

if(j.lt.(6+kdel)) DE(JJ)=DS(J-1) 

if(j.ge.(6+kdel)) DE(JJ)=ds(J) 

IJ=IJ+1 

IF(C(JJ).GT.4.60) GO TO 11 

IF(C(JJ).LT.1.20) GO TO 11 

34 Y1(JJ)=-Al*Yl(JJ-1)-A2*Y1(JJ-2)-A3*Y1(JJ-3) 

1 +Bl*C0Nl(JJ-l)+B2*C0Nl(JJ-2)+B3*C0Nl(JJ-3) 

Y(JJ)=Y1(JJ)+AVE 

ER1(JJ)=B(JJ)-Y(JJ-KDEL) 

ER2(JJ)=TORREF(J)-ERl(JJ) 

ER3(JJ)=S0/T0*Y(JJ)+Sl/T0*Y(JJ-l)+S2/T0*Y(JJ-2) 

1 +S3/T0*Y(JJ-3)-Tl/T0*ER3(JJ-l)-T2/T0*ER3(JJ-2)-T3/T0*ER3(JJ-3) 
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ER4(JJ)=ER2(JJ)-ER3(JJ) 

COWl(JJ)=-R1*C0N1(JJ-1)-R2*CaNl(JJ-2)-R3*C0N1(JJ-3) 

1 +T0*ER4(JJ)+Tl*ER4(JJ-l)+T2#ER4(JJ-2)+T3*ER4(JJ-3) 

DIS(JJ)=-CAl*DIS(JJ-l)-CA2*DIS(JJ-2)-CA3*DIS(JJ-3)-CA4* 

1 DIS(JJ-4)-CA5#DIS(JJ-5)+CBl»DE(JJ)+CB2*DE(JJ-l)+CB3*DE(JJ-2) 

1 +CB4*DE(JJ-3)+CB5*DE(JJ-4)+CB6*DE(JJ-5) 

C0N(JJ)=C0N1(JJ)+DIS(JJ) 

ISTEP=CON(JJ) 

ISTEP=ISTEP-ISS 

IMAX=(C(JJ)-l.40)*490.2 

IMIN=(C(JJ)-4.40)*490.2 

IF(ISTEP.GT.IMAX) ISTEP=IMAX 

IF(ISTEP.LT.IHIN) ISTEP=IMIN 

ISS=C0N1(JJ)+DIS(JJ) 

WRITE(STEPP(6:9).'(14.4)') ABS(ISTEP) 

WRITE(STEP(6:9),'(14.4)') ISTEP 

OPEN(UNIT=9,FILE='COMl'.FORM='BINARY') 

IF(ISTEP.GT.O) WRITE (9) STEP.CARR 

IF(ISTEP.LT.O) WRITE (9) STEPP.CARR 

IF(ISTEP.Eq.O) WRITE (9) STO.CARR 

CLOSE(UNIT=9) 

REFSP=245.0*SPREF(J)/2175.0 

REFSP=4095.0*REFSP/255.0 

IOUT=REFSP 

IF(JJ.EQ.(6+kdel)) CALL AOT(LCHAN1,IOUT,ERSTAT) 

IF(JJ.Eq.(5+IFSAMPLE)) THEN 

SPEED(J)=A(6+KDEL) 

TORQUE(J)=B(6+KDEL) 

TIME(J)=T(6+KDEL) 

DO 981 JU=1.5 

Y1(JU)=Y1(JU+IFSAMPLE) 

C0N1(JU)=C0N1(JU+IFSAMPLE) 

Y(JU)=Y(JU+IFSAMPLE) 

DE(JU)=DE(JU+IFSAMPLE) 

ER4(JU)=ER4(JU+IFSAMPLE) 

ER2(JU)=ER2(JU+IFSAMPLE) 

ER3(JU)=ER3(JU+IFSAMPLE) 

981 DIS(JU)=DIS(JU+IFSAMPLE) 

ENDIF 

333 CALL GETTIM(IT1,IT2.IT3.IT4) 
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T(JJ)=3600.0*IT1+60.0*IT2+1.0*IT3+0.01*IT4 

IF(T(JJ).LT.(H*IJ)) GO TO 333 

I CONTINUE 

OPEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) STO.CARR 

CLOSE(UNIT=9) 

GO TO 89 

II OPEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) STO.CARR 

CLOSE(UNIT=9) 

WRITE(»,*) 'LIMIT SWITCH OPERATION' 

36 CALL AING(LCHAN.PVOLT,ERSTAT) 

WRITE(*.*) 'ACTUATOR POSITION:' 

ACTP0SI=10.0*PVOLT(3)/4095.0-5.0 

WRITE(•,*) ACTPOSI 

WRITE(*,*) 'DO YOU WANT TO GIVE A STEP INPUT TO THE ACTUATOR?' 

WRITE(*,*) ' SELECT 1:YES 2:N0' 

READ(*,*) II 

IF(I1.EQ.2) GO TO 100 

IF(Il.EQ.l) GO TO 35 

35 WRITE(*.*) 'INPUT COMMAND FOR ACTUATOR' 

READ(*,555) STEPS 

OPEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) STEPS,CARR 

CLOSE(UNIT=9) 

GO TO 36 

89 WRITE(*,*) 'SELECT : 1)EXIT' 

WRITE(*,*) ' 2)TRANSIENT ENGINE CYCLE' 

WRITE(»,•) ' 3)CREATE AN OUTPUT FILE' 

WRITE(*,*) ' 4)SHUT-D0WN THE ENGINE/DYNO' 

READ(*,*) Ml 

IF(Ml.EQ.l) GO TO 6 

IF(Ml.Eq.2) GO TO 50 

IF(Ml.Eq.3) GO TO 88 

IF(H1.EQ.4) CALL STOP 

GO TO 89 

GO TO 6 

88 WRITE(*,*) 'AN OUTPUT FILE NAME' 

READ(*,555) FILEN 
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555 FORMAT(A) 

GPEN(UNIT=1,FILE=FILEN) 

SPEED(1201)=SPEED(1200) 

DO 39, J=l,1199 

IF(SPREF(J+1).Eq.SPREF(J)) GO TO 39 

IF(TR(J).LT.0.0) GO TO 39 

TORqUE(J+1)=TORQUE(J+1)+0.2748081*(SPEED(J+2)-SPEED(J)) 

39 WRITEd.llO) TIME(J+1) .SPREF(J) ,TR(J),SPEED(J+1) .T0RQUE(J+1) 

110 F0RMAT(1X,F12.5,1X,F12.5,1X.F12.5.1X,F12.5.1X,F12.5) 

CLOSE(UNIT=1) 

GO TO 89 

6 continue 

STOP 

end 

SUBROUTINE START(ERCODE) 

INTEGER*2 ERSTAT.LCHAN.LCHANl,PV0LT(3).iint.ERCODE 

INTEGER*1 CARR 

CHARACTER*9 STO,MOVEP.MOVEN 

DATA CARR /1*13/ 

LCHAN=1 

LCHAN1=2 

MOVEP=' M+5' 

MOVEN=' M-5' 

STO=' 

iint=2168 

50 CALL AOT(LCHANl,iint.ERSTAT) 

111=0 
52 CALL AING(LCHAN.PVOLT.ERSTAT) 

SAFTY=PV0LT(3) 

REFT0R=PV0LT(2) 

SAFTY=10.0*SAFTY/4095.0-5.0 

REFTOR=10.O*REFT0R/4O95.0-5.0 

REFT0R=48.43213*REFT0R+0.404608 

ANEG=-i0.0 

IF(REFTOR.GT.ANEG) GO TO 51 

IF(SAFTY.LT.2.2) GO TO 53 

IFdlI.EQ.l) GO TO 52 

QPEN(UNIT=9.FILE='COMl',FORM='BINARY') 

WRITE (9) MOVEP,CARR 
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CLOSE(UNIT=9) 

111=1 
GO TO 52 

51 0PEN(UNIT=9,FILE='C0M1',FORM='BINARY') 

WRITE (9) STO.CARR 

CLOSE (UIIIT=9) 

ERC0DE=0.0 

GO TO 100 

53 0PEN(UNIT=9,FILE='C0M1',FORM='BINARY') 

WRITE (9) STO.CARR 

CLOSE(UNIT=9) 

IEE=0 

55 CALL AING(LCHAN,PVOLT.ERSTAT) 

ACTP0S=PV0LT(3) 

ACTPOS=10.0*ACTP0S/4095.0-5.0 

IF(ACTP0S.GT.4.35) GO TO 56 

IF(IEE.EQ.l) GO TO 55 

OPEN(UNIT=9.FILE='COMl'.FORM='BINARY') 

WRITE (9) MOVEN.CARR 

CLOSE(UNIT=9) 

IEE=1 

GO TO 55 

56 0PEN(UNIT=9.FILE='C0M1'.F0RM='BINARY') 

WRITE (9) STO.CARR 

CLOSE(UNIT=9) 

iint=0 

CALL AOT(LCHANl,iint.ERSTAT) 

ERCODE=1.0 

WRITE(*.*) '***************************************************> 

WRITE(*.*) '* ! ! ! WARNING ! ! ! *' 

WRITE(*.*) '* ENGINE DOES NOT FIRE! SOMETHING IS WRONG *' 

WRITE(*.*) '***************************************************' 

100 CONTINUE 

RETURN 

End 

• SUBROUTINE STOP 

INTEGER*2 ERSTAT.LCHAN,LCHANl.PVOLT(3).iint 

INTEGER*1 CARR 

CHARACTER*9 STO,MOVEP,MOVEN 
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DATA CARR /1*13/ 

LCHAN=1 

LCHAN1=2 

MOVEP=' M+5' 

MOVEM=' M-5' 

STO=' 

IEE=0 

91 CALL AING(LCHAN,PVOLT,ERSTAT) 

ACTP0S=PV0LT(3) 

ACTPOS=10.0*ACTP0S/4095.0-5.0 

IF(ACTP0S.GT.4.35) GO TO 92 

IF(IEE.EQ.l) GO TO 91 

0PEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) MOVEN,CARR 

CLOSE(UNIT=9) 

IEE=1 

GO TO 91 

92 0PEN(UNIT=9,FILE='C0M1',FORM='BINARY') 

WRITE (9) STO,CARR 

CLOSE(UNIT=9) 

iint=2168 

CALL AOT(LCHANl.iint.ERSTAT) 

WRITE(*,*) 'ALLOW ENGINE TO OPERATE AT THIS SPEED FOR 5 MINUTES' 

WRITE(*,*) 'WHEN YOU ARE READY PRESS 1' 

READ(*,*) ISHUT 

IFdSHUT.EQ.l) GO TO 93 

93 iint=0 

CALL AOT(LCHANl,iint,ERSTAT) 

RETURN 

END 

SUBROUTINE IDENT(THETAP,THETAD,NNUM,NDEN,NDNUM,NDDEN,KP,KD) 

real*4 Y(500),yd(5Ô0),thetap(6),thetad(6) 

INTEGER*2 ERSTAT,LCHAN,LCHAN1 

INTEGER*2 PV0LT(3) 

INTEGER*2 ITl,IT2,IT3,IT4 

INTEGERfl CARR 

INTEGER*2 lACl,ISPl,isp 

CHARACTER*9 STEP,STEPP,STO 

CHARACTER*9 STEPl,MOVEP,MOVEN 
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DATA CARR /1*13/ 

LCHAN=1 

LCHAN1=2 

STEP=' + ' 

STEPP=' - ' 

STO=' 0' 

HOVEP=' M+5' 

MOVEN=' M-5' 

isp=l.808925*1300.0 

refspl=1200.0 

ISP1=1.808925*REFSP1 

iacl=100 

IF(IACl.GT.O) WRITE(STEP(6:9),'(I4.4)') lACl 

IF(IACl.LE.O) WRITE(STEPP(6:9).'(I4.4)') ABS(IACl) 

IF(IACl.GT.O) STEP1=STEP 

IF(IACl.LE.O) STEP1=STEPP 

call aot(lchanl,isp,erstat) 

call delay(0,5,0) 

call aing(lchan,pvolt,erstat) 

tor=10.O*pvolt(2)/4095.0-5.0 

tor=48.43213*tor+0.4046 

if(tor.gt.20.0) then 

0PEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) MOVEN.CARR 

CLOSE(UNIT=9) 

CALL AING(LCHAN,PVOLT,ERSTAT) 

TOR1=10.0*PV0LT(2)/4095.0-5.0 

T0R1=48.43213*TOR1+0.4046 

IF(TORI.GT.20.0) GO TO 1 

0PEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) STO,CARR 

CLOSE(UNIT=9) 

ENDIF 

if(tor.Lt.0.0) then 

0PEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) MOVEP.CARR 

CLOSE(UNIT=9) 

CALL AING(LCHAN,PVOLT,ERSTAT) 

TOR1=10.0*PVOLT(2)/4095.0-5.0 

T0R1=48.43213*T0Rl+0.4046 
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IF(TORI.LT.0.0) GO TO 2 

OPEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) STO.CARR 

CL0SE(UNIT=9) 

END IF 

call delay(0,5,0) 

CALL SETTIM(0,0,0,0) 

DO 100 J=l,500 

CALL AING(LCHAN,PVOLT,ERSTAT) 

Y(J)=10.0*PVOLT(2)/4095.0-5.0 

Y(J)=48.43213*7(j)+0.4046 . 

IF(J.Eq.250) THEN 

OPEN(UNIT=9,FILE='COMl',FGRM='BINARY') 

WRITE (9) STEP1,CARR 

CLOSE(UNIT=9) 

END IF 

9 CALL GETTIM(IT1.IT2,IT3,IT4) 

T=3600.0*IT1+60.0*IT2+1.0*IT3+0.01*IT4 

IF(T.LT.(j*0.02)) GO TO 9 

100 CONTINUE 

iacl=-100 

IF(IACl.GT.O) WRITE(STEP(6:9),'(14.4)') lACl 

IF(IACl.LE.O) WRITE(STEPP(6:9),'(I4.4)') ABS(IACl) 

IF(IACl.GT.O) STEP1=STEP 

IF(IACl.LE.O) STEP1=STEPP 

0PEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) STEPl.CARR 

CLOSE(UNIT=9) 

call delay(0,5,0) 

CALL SETTIM(0,0,0,0) 

DO 200 J=l,500 

CALL AING(LCHAN,PVOLT,ERSTAT) 

YD(J)=10.0*PV0LT(2)/4095.0-5.0 

YD(J)=48.43213*yD(j)+0.4046 

IF(J.EQ.250) THEN 

CALL A0T(LCHAN1,ISP1,ERSTAT) 

END IF 

99 CALL GETTIM(IT1,IT2,IT3,IT4) 

T=3600.0*IT1+60.0*IT2+1.0*IT3+0.01*IT4 

IF(T.LT.(j*0.02)) GO TO 99 
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200 CONTINUE 

CALL A0T(LCHAN1,ISP1,ERSTAT) 

call delay(0,5,0) 

call aing(lchan,pvolt,erstat) 

tor=10.O»pvolt(2)/4095.0-5.0 

tor=48.43213*tor+0.4046 

if(tor.gt.30.0) then 

0PEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) MOVEN.CARR 

CLOSE(UNIT=9) 

3 CALL AING(LCHAN.PVOLT.ERSTAT) 

T0Rl=10.0*PV0LT(2)/4095.0-5.0 

T0R1=48.43213*T0Rl+0.4046 

IF(TOR1.GT.30.0) GO TO 3 

OPEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) STO.CARR 

CLOSE(UNIT=9) 

END IF 

if(tor.Lt.0.0) then 

0PEN(UNIT=9.FILE='COMl',FORM='BINARY') 

WRITE (9) MOVEP.CARR 

CLOSE(UNIT=9) 

4 CALL AING(LCHAN,PVOLT,ERSTAT) 

TOR1=10.0*PVOLT(2)/4095.0-5.0 

T0R1=48.43213*T0Rl+0.4046 

IF(TORl.LT.O.O) GO TO 4 

0PEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) STO.CARR 

CLOSE(UNIT=9) 

END IF 

ACTIN=100.0 

call parest(y,actin.nnum,nden,thetap.kp,erminl) 

call parest(yd,actin,ndnum,ndden,thetadjkd,ermin2) 

999 continue 

RETURN 

END 

subroutine parest(y,actin.nnum,nden,thetat,kl,erminl) 

real*4 Y(500),thetat(6) 

real*4 thetal(6),theta2(6),theta3(6),theta4(6) 
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real*4 theta5(6),theta6(6) 

do 1 j=1,500 

IF(J.EQ.l) YY1=Y(1) 

Y(J)=Y(J)-YY1 

1 continue 

erminl=10.0**10 

call tmodell(y,act in,2,thetal,ermin,k) 

If(ermin.lt.erminl) then 

erminl=ermin 

nniim=0 

nden=l 

thetat=thetal 

kl=k 

endif 

call tmodel2(y,act in,3,theta2,ermin,k) 

If(ermin.lt.erminl) then 

erminl=ermin 

nnum=0 

nden=2 

thetat=theta2 

kl=k 

endif 

call tmodelS(y,act in,4,theta3,ermin,k) 

If(ermin.lt.erminl) then 

erminl=ermin 

nnum=l 

nden=2 

thetat=theta3 

kl=k 

endif 

call tmodel4(y,act in,4,theta4,ermin,k) 

If(ermin.lt.erminl) then 

erminl=ermin 

nnum=0 

nden=3 

thetat=theta4 

kl=k 

endif 

call tmodelS(y,act in,5,thetaS,ermin,k) 
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If(ermin.It.erminl) then 

ermin 1=ermin 

nnum=l 

nden=3 

thetat=theta5 

kl=k 

endif 

call tmodelS(y,actin,6,theta6,ermin,k) 

If(ermin.It.erminl) then 

erminl=ermin 

nnum=2 

nden=3 

thetat=theta6 

kl=k 

endif 

RETURN 

END 

subrout ine tmodel1(y,act in,n,thet a,ermin,k) 

real*4 y(500),theta(6),ofdiag(15),fi(6) 

real*4 err(30),diag(6),u(500),lam,yest(500) 

real*4 b(500),f0(500),fl(500),sl(500),ynew 

real*4 bfl,afl,bsl,bs2,asl,as2 

istop=0 

DO 702 K=l,30 

4 DO 300 1=1,n 

diag(i)=10.0**10 

theta(i)=0.0 

300 continue 

do 302 i=l,(n*(n-l)/2) 

ofdiag(i)=0.0 

302 continue 

do 303 j=l,500 

u(j)=0.0 

if(j.ge.(250+k)) u(j)=actin 

if(j.gt.(250+k)) b(j)=y(j) 

if(j.le.(250+k)) b(j)=0.0 

303 continue 

lam=l .0 

bf1=0.0198013267 
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afl=-.980198673306755 
bsl=0.1973532271095920-3 
bs2=0.194739311703010-3 
asl=-l.960397346613511 
as2=0.9607894391522323 
DO 1 J=3,470 
fO(j)=bfl*b(j-l)-afl*fO(j-l) 
fl(j)=bsl*b(j-l)+bs2*b(j-2)-asl*f1(j-l)-as2*f1(j-2) 
sl(j)=bsl*u(j-l)+bs2*u(j-2)-asl*sl(j-l)-as2#sl(j-2) 
ynew=fO(j)-fl(j) 
fi(l)=-fl(j) 
fi(2)=sl(j) 
CALL Rud(ii,yn0w,fi,th0ta,diag,ofdiag,lam) 

1 CONTINUE 
if(istop.eq.1) go to 5 
Do 7 j=l,2 
if(theta(j).10.0.0) go to 8 

7 continue 
0r=O.O 
hsamp=0.02 
call conv0rtO(theta(l),theta(2), 

@hsamp,bzl,azl) 
DO 2 J=250+k,470 
yest(j)=-azl*y0st(j-l)+bzl* 

®u(j-l) 
0r=0r+abs(b(j)-y0st(j))**2 

2 continu0 
0rr(k)=0r 

8 do 6 j=1,2 
if(theta(j).10.0.0) 0r=lO.0**10 
if(theta(j) .10.0.0) 0rr(k)=10.0**10 

6 continue 
702 CONTINUE 

istop=l 
ermin=10.0**10 
do 3 j=l,30 
if(0rr(j).lt.0rmin) k=j 
if(orr(j).It.0nnin) eimin=err(j) 

3 continu0 
go to 4 
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5 continue 
return 
END 

subrout ine tmodel2(y,act in,n,thet a,ermin,k) 
real*4 y(500),theta(6),ofdiag(15),fi(6) 
real»4 err(30) ,diag(6) ,u(500) ,lani,yest(500) 
real*4 b(500),f0(500).fl(500),f2(500) 
real*4 s2(500),ynew 
real*4 bf1,af1,bsl,bs2,asl,as2,btl,bt2,bt3,atl,at2,at3 
istop=0 
DO 702 K=1.30 

4 DO 300 1=1,n 
diag(i)=10.0**10 
theta(i)=0.0 

300 continue 
do 302 i=l,(n*(n-l)/2) 
ofdiag(i)=0.0 

302 continue 
do 303 3=1,500 
u(j)=0.0 
if(j.ge.(250+k)) u(j)=actin 
if(j.gt.(250+k)) b(j)=y(j) 
if(j.le.(250+k)) b(j)=0.0 

303 continue 
lain=l .0 

bf1=0.0198013267 
afl=-.980198673306755 
bsl=0.197353227109592e-3 
bs2=0.19473931170301e-3 
asl=-l.960397346613511 
as2=0.9607894391522323 
bt1=0.131349244814061e-5 
bt2=0.517578714848144e-5 
bt3=0.127467285840344e-5 
atl=-2.940596019920266 
at2=2.88236831745697 
at3=-0.941764533584249 
DO 1 J=4,470 
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fO(j)=bfl*b(j-l)-afl»fO(j-l) 
fl(j)=bsl»b(j-l)+bs2#b(j-2)-asl*fl(j-l)-as2»f1(j-2) 
f2(j)=btl*b(j-l)+bt2*b(j-2)+bt3*b(j-3)-atl*f2(j-l)-at2*f2(j-2) 

@-at3*f2(j-3) 
s2(j)=btl*u(j-l)+bt2*u(j-2)+bt3*u(j-3)-atl*s2(j-l)-at2*s2(j-2) 

ffl-at3*s2(j-3) 
yneH=f0(j)-2.0*f1(j)+f2 ( j) 
fi(l)=f2(j)-fl(j) 
fi(2)=-f2(j) 
fi(3)=s2(j) 
CALL Rud(n,yiiew,fi,theta,diag,ofdiag,lain) 

1 CONTINUE 
if(istop.eq.l) go to 5 
Do 7 j=l,3 
if(theta(j).le.0.0) go to 8 

7 continue 
er=0.0 
hsamp=0.02 
call convertl(theta(l),theta(2),theta(3), 

(Shsamp,bzl,bz2, azl, az2) 
DO 2 J=250+k,470 
yest(j)=-azl*yest(j-l)-az2*yest(j-2)+bzl* 

®u(j-l)+bz2*u(j-2) 
er=er+abs(b(j)-yest(j))**2 

2 continue 
err(k)=er 

8 do 6 j=1,3 
if(theta(j).le.0.0) er=10.0**10 
if(theta(j).le.0.0) err(k)=10.0**10 

6 continue 
702 CONTINUE 

istop=l 
ermin=10.0**10 
do 3 j=l,30 
if(err(j).It.ermin) k=j 
if(err(j).It.ermin) ermin=err(j) 

3 continue 
go to 4 

5 continue 
return 
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END 

subroutine tmodel3(y,actin,n,theta,ermin,k) 
real*4 y(500),theta(6),ofdiag(15),fi(6) 
real*4 err(30),diag(6),u(500),lam,yest(500) 
real*4 b(500),f0(500),fl(500),f2(500) 
real*4 s2(500),sl(500),ynew 
real*4 bf1,af1,bsl,bs2,asl,as2,btl,bt2,bt3,atl,at2,at3 
istop=0 
DO 702 K=l,30 

4 DO 300 1=1,n 
diag(i)=10.0**10 
theta(i)=0.0 

300 continue 
do 302 i=l, (n*(n-l)/2) 
ofdiag(i)=0.0 

302 continue 
do 303 j=l,500 
u(j)=0.0 
if(j.ge.(250+k)) u(j)=actin 
if(j.gt.(250+k)) b(j)=y(j) 
if(j.le.(250+k)) b(j)=0.0 

303 continue 
lam=l. 0 
bf1=0.0198013267 
afl=-.980198673306755 
bsl=0.197353227109592e-3 
bs2=0.19473931170301e-3 
asl=-l.960397346613511 
as2=0.9607894391522323 
btl=0.131349244814061e-5 
bt2=0.517578714848144e-5 
bt3=0.127467285840344e-5 
atl=-2.940596019920266 
at2=2.88236831745697 
at3=-0.941764533584249 

• DO 1 J=4,470 
f0(j)=bfl*b(j-l)-afl*fO(j-l) 
fl(j)=bsl*b(j-l)+bs2*b(j-2)-asi*fl(j-l)-as2*fl(j-2) 
f2(j)=btl*b(j-l)+bt2*b(j-2)+bt3*b(j-3)-atl*f2(j-l)-at2*f2(j-2) 
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a-at3*f2(j-3) 
sl(j)=bsl*u(j-l)+bs2*u(j-2)-asl*sl(j-l)-as2*sl(j-2) 
s2(j)=btl*u(j-l)+bt2»u(j-2)+bt3»u(j-3)-atl*s2(j-l)-at2*s2(j-2) 

®-at3*s2(j-3) 
ynew=f0(j)-2.0*f1(j)+f2 ( j) 
fi(l)=f2(j)-fl(j) 
fi(2)=-f2(j) 
fi(3)=sl(j)-s2(j) 
fi(4)=s2(j) 
CALL Rud(n,ynew,f i,thet a,di ag,of di ag,lam) 

1 CONTINUE 
if(istop.eq.1) go to 5 
Do 7 j=l,4 
if(theta(j).le.O.O) go to 8 

7 continue 
er=0.0 
hsamp=0.02 
call convert2(theta(l) ,theta(2) ,theta(3) ,theta(4), 

Qhsamp,bz1,bz2,azl,az2) 
DO 2 J=250+k,470 
yest(j)=-azl*yest(j-1)-az2*yest(j-2)+bzl* 

@u(j-l)+bz2*u(j-2) 
er=er+abs(b(j)-yest(j))**2 

2 continue 
err(k)=er 

8 do 6 j=l,4 
if(theta(j).le.O.O) er=10.0**10 
if(theta(j).le.O.O) err(k)=10.0**10 

6 continue 
702 CONTINUE 

istop=l 
ermin=10.0**10 
do 3 j=1,30 
if(err(j).It.ermin) k=j 
if (err(j) .It .ermin) erniin=err(j) 

3 continue 
go to 4 

5 continue 
return 
END 
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subrout ine tinodel4 (y, act in ,n, thet a, ermin, k) 
real»4 y(500),theta(6),ofdiag(15),fi(6) 
real*4 err(30),diag(6),u(500),lam.yest(500) 
real*4 b(500),f0(500),f1(500).f2(500),±3(500) 
real*4 s3(500),ynew 
real*4 bf1,af1,bsl,bs2,asl,as2,btl,bt2,bt3,atl,at2,at3 
real*4 bfol,bfo2,bfo3,bfo4,afol,afo2,afo3,afo4 
istop=0 
DO 702 K=l,30 

4 DO 300 1=1,n 
diag(i)=10.0**10 
theta(i)=0.0 

300 continue 
do 302 i=l,(n*(n-l)/2) 
ofdiag(i)=0.0 

302 continue 
do 303 j=l,500 
u(j)=0.0 
if(j.ge.(250+k)) u(j)=actin 
if(j.gt.(250+k)) b(j)=y(j) 
if(j.le.(250+k)) b(j)=0.0 

303 continue 
lam=l. 0 
bf1=0.0198013267 
afl=-.980198673306755 
bsl=0.1973532271095920-3 
bs2=0.19473931170301e-3 
asl=-l.960397346613511 
as2=0.9607894391522323 
btl=0.1313492448140610-5 
bt2=0.5175787148481440-5 
bt3=0.1274672858403440-5 
atl=-2.940596019920266 
at2=2.88236831745697 
at3=-0.941764533584249 
bfol=0.0656088394723750-7 
bfo2=0.710248151403192e-7 
bfo3=0.698974599311342e-7 
bfo4=0.062533999506398e-7 
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afol=-3.920794693227021 
afo2=5.764736634913939 
afo3=-3.767058134336995 
afo4=0.923116346386636 
DO 1 J=5,470 
fO(j)=bfl*b(j-l)-afl*fO(j-l) 
fl(j)=bsl*b(j-l)+bs2*b(j-2)-asl*fl(j-l)-as2*fl(j-2) 
f2(j)=btl*b(j-l)+bt2*b(j-2)+bt3»b(j-3)-atl*f2(j-l)-at2*f2(j-2) 

@-at3*f2(j-3) 
f3(j)=bfol*b(j-1)+bfo2*b(j-2)+bfo3*b(j-3)+bfo4*b(j-4)-

@afol*f3(j-l)-afo2*f3(j-2)-afo3*f3(j-3)-afo4*f3(j-4) 
s3(j)=bfol*u(j-1)+bfo2*u(j-2)+bfo3*u(j-3)+bfo4*u(j-4)-

@afol*s3(j-l)-afo2*s3(j-2)-afo3*s3(j-3)-afo4*s3(j-4) 
ynew=f0(j)-3.0*fl(j)+3.0*f2(j)-f3(j) 
fi(l)=2.0*f2(j)-fl(j)-f3(j) 
fi(2)=f3(j)-f2(j) 
fi(3)=-f3(j) 
fi(4)=S3(j) 
CALL Rud(n,ynew,f i,thet a,di ag,of di ag,lam) 

1 CONTINUE 
if(istop.eq.l) go to 5 
Do 7 j=l,4 
if(theta(j).le.0.0) go to 8 

7 continue 
er=0.0 
hsamp=0.02 
call converts(theta(l),theta(2),theta(3),theta(4), 

@hsamp,bzl,bz2,bz3,azl,az2,az3) 
DO 2 J=250+k,470 
yest(j)=-azl*yest(j-l)-az2*yest(j-2)-az3*yest(j-3)+bzl* 

@u(j-l)+bz2*u(j-2)+bz3*u(j-3) 
er=er+abs(b(j)-yest(j))**2 

2 continue 
err(k)=er 

8 do 6 j=l,4 
if(theta(j).le.0.0) er=10.0**10 
if(theta(j).le.0.0) err(k)=10.0**10 

6 continue 
702 CONTINUE 
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istop=l 
ermin=10.0**10 
do 3 j=l,30 
if(err(j).It.ermin) k=j 
if (err ( j ) . It. erniin) ermin=err ( j ) 

3 continue 
go to 4 

5 continue 
return 
END 

subroutine tmodel5(y,actin,n,theta,erniin,k) 
real*4 y(500),theta(6),ofdiag(15),fi(6) 
real*4 err(30),diag(6),u(500),lam,yest(500) 
real*4 b(500),f0(500),f1(500),f2(500),f3(500) 
real*4 s2(500),s3(500),ynew 
real*4 bf1,af1,bsl,bs2,asl,as2,btl,bt2,bt3,atl,at2,at3 
real*4 bfol,bfo2,bfo3,bfo4,afol,afo2,afo3,afo4 
istop=0 
DO 702 K=l,30 

4 DO 300 1=1,n 
diag(i)=10,0**3 
theta(i)=0.0 

300 continue 
do 302 i=l,(n*(n-l)/2) 
ofdiag(i)=0.0 

302 continue 
do 303 j=1,500 
u(j)=0.0 
if(j.ge.(250+k)) u(j)=actin 
if(j.gt.(250+k)) b(j)=y(j) 
if(j.le.(250+k)) b(j)=0.0 

303 continue 
lam=l. 0 
bf 1=0.0198013267 
af 1=-.980198673306755 
bsl=0.197353227109592e-3 
bs2=0.19473931170301e-3 
asl=-l.960397346613511 
as2=0.9607894391522323 
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btl=0.1313492448140616-5 
bt2=0.5175787148481440-5 
bt3=0,127467285840344e-5 
atl=-2.940596019920266 
at2=2.88236831745697 
at3=-0.941764533584249 
bfol=0.065608839472375e-7 
bfo2=0 .710248151403192e-7 
bfo3=0.698974599311342e-7 
bfo4=0.0625339995063980-7 
afol=-3.920794693227021 
afo2=5.764736634913939 
afo3=-3.767058134336995 
afo4=0.923116346386636 
DO 1 J=5.470 
fO(j)=bfl*b(j-l)-afl*fO(j-l) 
fl(j)=bsl*b(j-l)+bs2*b(j-2)-asl»fl(j-l)-as2*fl(j-2) 
f2(j)=btl*b(j-l)+bt2*b(j-2)+bt3*b(j-3)-atl*f2(j-l)-at2*f2(j-2) 

@-at3*f2(j-3) 
f3(j)=bfol*b(j-1)+bfo2»b(j-2)+bfo3*b(j-3)+bfo4*b(j-4)-

Qafol»f3(j-1)-afo2*f3(j-2)-afo3*f3(j-3)-afo4*f3(j-4) 
s2(j)=btl*u(j-l)+bt2*u(j-2)+bt3*u(j-3)-atl*s2(j-l)-at2*s2(j-2) 

®-at3*s2(j-3) 
s3(j)=bfol*u(j-l)+bfo2*u(j-2)+bfo3*u(j-3)+bfo4*u(j-4)-

Qafol*s3(j-l)-afo2*s3(j-2)-afo3*s3(j-3)-afo4*s3(j-4) 
yn0w=f0(j)-3.0*f1(j)+3.0*f2(j)-f3(j) 
fi(l)=2.0*f2(j)-fl(j)-f3(j) 
fi(2)=f3(j)-f2(j) 
fi(3)=-f3(j) 
fi(4)=S2(j)-S3(j) 
fi(5)=s3(j) 
CALL Rud(n,yn0w,fi,th0ta,diag.ofdiag,lam) 
CONTINUE 
if(istop.0q.l) go to 5 
do 7 j=l,5 
if(th0ta(j).10. 0 . 0 )  go to 8  
continu© 
er=0.0 
hsamp=0.02 
call conv0rt4(theta(l),th0ta(2),th0ta(3),th0ta(4),th0ta(5), 
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Ohsampibzl ,bz2,bz3,azl ,az2,eiz3) 
DO 2 J=250+k,470 
yest(j)=-azl*yest(j-1)-az2*yest(j-2)-az3*yest(j-3)+bzl* 

(8u( j -1 ) +bz2*u( j -2) +bz3*u( j -3) 
er=er+abs(b(j)-yest(j))**2 

2 continue 
err(k)=er 

8 do 6 j=1,5 
if(theta(j).le.0.0) err(k)=10.0**10 
if(theta(j).le.0.0) er=10.0**10 

6 continue 
702 CONTINUE 

istop=l 
ermin=10.0**10 
do 3 j=l,30 
if(err(j).It.ermin) k=j 
if(err(j).It.ermin) ermin=err(j) 

3 continue 
go to 4 

5 continue 
return 
END 

subrout ine tmodel6(y,act in,n,thet a,ermin,k) 
real*4 y(500),theta(6),ofdiag(15),fi(6) 
real*4 err(30),diag(6),u(500),1am,yest(500) 
real*4 b(500),f0(500),fl(500),f2(500),f3(500) 
real*4 si(500),s2(500),s3(500),ynew 
real*4 bf1,af1,bsl,bs2,asl,as2,btl,bt2,bt3,atl,at2,at3 
real*4 bfol,bfo2,bfo3,bfo4,afol,afo2,afo3,afo4 
istop=0 
DO 702 K=l,30 

4 DO 300 1=1,n 
diag(i)=10.0**10 
theta(i)=0.0 

300 continue 
do 302 i=l,(n*(n-l)/2) 
ofdiag(i)=0.0 

302 continue 
do 303 j=1,500 



www.manaraa.com

166 

u(j)=0.0 
if(j.ge.(250+k)) u(j)=actin 
if(j.gt.(250+k)) b(j)=y(j) 
if(j.le.(250+k)) b(j)=0.0 

303 continue 
lam=l. 0 
bf1=0.0198013267 
afl=-.980198673306755 
bsl=0.197353227109592e-3 
bs2=0.19473931170301e-3 
asl=-l.960397346613511 
as2=0.9607894391522323 
btl=0.131349244814061e-5 
bt2=0.517578714848144e-5 
bt3=0.127467285840344e-5 
atl=-2.940596019920266 
at2=2.88236831745697 
at3=-0.941764533584249 
bfol=0.065608839472375e-7 
bfo2=0.710248151403192e-7 
bfo3=0.698974599311342e-7 
bfo4=0.0625339995063980-7 
afol=-3.920794693227021 
afo2=5.764736634913939 
afo3=-3.767058134336995 
afo4=0.923116346386636 
DO 1 J=5,470 
fO(j)=bfl*b(j-l)-afl*fO(j-l) 
f1(j)=bsl*b(j-l)+bs2*b(j-2)-asl*fl(j-l)-as2*fl(j-2) 
f2(j)=btl*b(j-l)+bt2*b(j-2)+bt3*b(j-3)-atl*f2(j-l)-at2*f2(j-2) 

@-at3*f2(j-3) 
f3(j)=bfol*b(j-l)+bfo2*b(j-2)+bfo3*b(j-3)+bfo4*b(j-4)-

@afol*f3(j-l)-afo2*f3(j-2)-afo3*f3(j-3)-afo4*f3(j-4) 
sl(j)=bsl*u(j-l)+bs2#u(j-2)-asl*sl(j-l)-as2*sl(j-2) 
s2(j)=btl»u(j-l)+bt2*u(j-2)+bt3*u(j-3)-atl*s2(j-l)-at2*s2(j-2) 

(8-at3*s2(j-3) 
s3(j)=bfol*u(j-l)+bfo2*u(j-2)+bfo3*u(j-3)+bfo4*u(j-4)-

@afol*s3(j-l)-afo2*s3(j-2)-afo3*s3(j-3)-afo4*s3(j-4) 
ynew=f0(j)-3.0*f1(j)+3.0*f2(j)-f3(j) 
fi(l)=2.0*f2(j)-fl(j)-f3(j) 
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fi(2)=f3(j)-f2(j) 
fi(3)=-f3(j) 
fi(4)=Sl(j)-2.0*s2(j)+s3(j) 
fi(5)=s2(j)-s3(j) 
fi(6)=s3(j) 
CALL Rud(n,ynew,fi.theta,diag.ofdiag,lam) 

1 CONTINUE 
if(istop.eq.l) go to 5 
Do 7 j=l,6 
if(theta(j).le.O.O) go to 8 

7 continue 
er=0.0 
hsamp=0.02 
call convert5(theta(l),theta(2),theta(3),theta(4),theta(5), 

®theta(6),hsamp,bzl,bz2,bz3,azl,az2,az3) 
DO 2 J=250+k,470 
yest(j)=-azl*yest(j-l)-az2*yest(j-2)-az3*yest(j-3)+bzl* 

@u(j-l)+bz2*u(j-2)+bz3*u(j-3) 
er=er+abs(b(j)-yest(j))**2 

2 continue 
err(k)=er 

8 do 6 j=l,6 
if(theta(j).le.O.O) er=10.0**10 
if(theta(j).le.O.O) err(k)=10.0**10 

6 continue 
702 CONTINUE 

istop=l 
ermin=10.0**10 
do 3 j=l,30 
if(err(j).It.ermin) k=j 
if(err(j).It.ermin) ermin=err(j) 

3 continue 
go to 4 

5 continue 
return 
END 

subroutine rud(n,ynew,fi,theta,diag,ofdiag,lam) 
integer n,kf ,ku,i ,• j , j j 
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real*4 ynew 
real*4 fi(ii) ,theta(n) ,diag(n) ,ofdiag(n*(n-l)/2) ,1am 
real*4 perr.fj,vj,alphaj,ajlast,pj,w,k(10) 
perr=ynew 
do 10 i=l,n 
perr=perr-theta(i)•fi(i) 

10 continue 
fj=fi(l) 
vj=diag(l)*fj 
k(l)=vj 
alphaj=1.0+vj *fj 
diag(1)=diag(1)/alphaj/lam 
if(n.le.l) goto 40 
kf=0 
ku=0 
do 30 j=2,n 
fj=fi(j) 

do 20 i=l,jj 
kf=kf+1 
fj=fj+fi(i)*ofdiag(kf) 

20 continue 
vj=fj*diag(j) 
k(j)=vj 
ajlast=alphaj 
alphaj =ajlast+vj *fj 
diag(j)=diag(j)*ajlast/alphaj/lam 
pj=-fj/ajlast 
jj=j-l 
do 30 i=l.jj 
ku=ku+l 
H=ofdiag(ku)+k(i)*pj 
k(i)=k(i)+ofdiag(ku)#vj 
ofdiag(ku)=w 

30 continue 
40 continue 

do 50 i=l,n 
theta(i)=thet a(i)+perr*k(i)/alphaj 

50 continue 
return 
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end 

subroutine convertO(tl,t2,h,bl,al) 
real*4 tl,t2 
al=-exp(-tl*h) 
bl=t2/tl*(1.0-exp(-tl*h)) 
return 
end 

subrout ine convert1(t1,12,t3,h,bl,b2,al,a2) 
real*4 tl,t2,t3 
wO=sqrt(t2) 
zeta=tl*0.5/wO 
if(zeta.lt.1.0) then 
w=wO»sqrt(1.0-zeta**2) 
alfa=exp(-zeta*HO*h) 
beta=cos(w*h) 
ganuna= s in ( w*h) 
bl=t3*(1.0-alfa*(beta+w0*gamma*zeta/w))/(wO**2) 
b2=t3*(alfa**2+alfa*(zeta*wO*gamma/w-beta))/(w0**2) 
al=-2.0*alfa*beta 
a2=alfa**2 
else 
a=0.5*t1-0.5*sqrt(t1**2-4.0*t2) 
b=0.5*tl+0.5*sqrt(t1**2-4.0*t2) 
ab=a*b 
bl=t3*(b*(1.0-exp(-a*h))-a*(1.0-exp(-b*h)))/((b-a)»t2) 
b2=t3»(a*(1.0-exp(-b*h))*exp(-a*h)-b*(l.0-exp(-a*h))*exp(-b*h) 

@)/(t2*(b-a)) 
al=-exp(-a»h)-exp(-b*h) 
a2=exp(-a*h-b*h) 
endif 
return 
end 

subroutine convert2(tl,t2,t3,t4,h,bl,b2,al,a2) 
real*4 tl,t2,t3,t4 
wO=sqrt(t2) 
zeta=tl*0.5/w0 
if(zeta.lt.1.0) then 
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w=wO*sqrt(1.0-zeta**2) 
alfa=exp(-2eta*wO*h) 
b0ta=cos(w*h) 
gainma=sin(w*h) 
bl=t3*gamma*exp(-zeta*wO*h)/*+t4*(l .0-alfa*(beta+zeta*wO* 

Ogamma/w))/(w0**2) 
b2=-t3*gainma*exp(-zeta*H0*h)/w+t4*(alfa**2+alfa*(z0ta*wO* 

Ogamma/w-beta))/(w0**2) 
al=-2.0*alfa*beta 
a2=alfa**2 
else 
a=0.5*t1+0.5»sqrt(t1**2-4.0*t2) 
b=0.5*tl-0.5*sqrt(t1**2-4.0*t2) 
ab=a»b 
c=t4/t3 
bl=t3*(exp(-b*h)-exp(-a*h)+c*(l.0-exp(-b*h))/b-c*(l.0 

@-exp(-a*h))/a)/(a-b) 
b2=t3*(c*exp(-a*h-b*h)/ab+(b-c)*exp(-a*h)/(b*(a-b))+ 

@(c-a)*exp(-b*h)/(a*(a-b))) 
al=-exp(-a*h)-exp(-b*h) 
a2=exp(-a*h-b*h) 
endif 
return 
end 

subroutine converts(t1,t2,t3,t4,h,bl,b2,b3,al,a2,a3) 
real*4 tl,t2,t3,t4,pl,p2,p3,rn2,rn3 
call roots(tl,t2,t3,pl,p2,p3) 
rnl=t4/(pl**2-pl*p2+p3) 
rn2=-rnl 
rn3=rnl*(pl-p2) 
call convert2(p2,p3,m2,m3,h,rbl,rb2,ral,ra2) 
c=rnl*(1.0-exp(-pl*h))/pl 
d=-exp(-pl*h) 
bl=c+rbl 
b2=c*ral+rbl*d+rb2 
b3=ra2*c+rb2*d 
al=d+ral 
a2=d*ral+ra2 
a3=ra2»d 
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return 
end 

subroutine convert4(tl ,t2 ,t3,t4,t5 ,h.,bl ,b2 ,b3,al,a2,a3) 
real*4 tl,t2,t3,t4,t5,pl,p2,p3,rn2,rn3 
call roots(tl,t2,t3,pl,p2,p3) 
rnl=(-t4*pl+t5)/(pl**2-pl*p2+p3) 
rn2=-rnl 
rn3=(t5-p3*ml)/pl 
call convert2(p2 ,p3,m2,m3 ,h,rbl,rb2,ral,ra2) 
c=rnl*(1.0-exp(-pl*h))/pi 
d=-exp(-pl*h) 
bl=c+rbl 
b2=c*ral+rbl*d+rb2 
b3=ra2*c+rb2*d 
al=d+ral 
a2=d*ral+ra2 
a3=ra2*d 
return 
end 

subroutine converts(tl,t2,t3,t4,t5,t6,h,bl,b2,b3,al,a2,a3) 
real*4 tl,t2,t3,t4,t5,t6,pl,p2,p3,m2,m3 
call roots(tl,t2,t3,pl,p2,p3) 
rnl=(t4*pl*pl-t5*pl+t6)/(pl*»2-pl*p2+p3) 
rn2=t4-ml 
rn3=(t6-p3*ml)/pl 
call convert2(p2,p3,m2, m3,h, rbl,rb2, ral, ra2) 
c=rnl*(1.0-exp(-pl*h))/pi 
d=-exp(-pl*h) 
bl=c+rbl 
b2=c*ral+rbl*d+rb2 
b3=ra2*c+rb2*d 
al=d+ral 
a2=d»ral+ra2 
a3=ra2*d 
return 
end 

subroutine roots(b,c,d,pi,p2,p3) 
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real*4 b,c,d,pl,p2,p3 
p=c-b*b/3.0 
ql=(2.0*b*b*b-9.0*b*c+27.0*d)/27.0 
del=0.25*ql*ql+p*p*p/27.0 
if(del.ge.0.0) then 
el=-0.5*ql+sqrt(del) 
e2=-0.5*ql-sqrt(del) 
e3=l.0 
e4=1.0 
if(el.It.0.0) e3=-1.0 
if(e2.lt.0.0) e4=-1.0 
yl=e3*(abs(el)**(l.0/3.0))+e4*(abs(e2)**(l.0/3.0)) 
else 
r=sqrt((-p*p*p)/27.0) 
yl=2.0*sqrt(-p/3.0)*cos(acos(-0.5*ql/r)/3.0) 
endif 
pl=b/3.0-yl 
p2=b-pl 
p3=c-pl*p2 
return 
end 

subrout ine design(thet ap,thet ad,nnum,nden,ndnum,ndden,h,B1, 
(882,B3, Al, A2, A3 ,BD1 ,BD2 ,BD3, ADl,AD2, AD3 ,NCN ,NCD,CBl,CB2,CB3,CB4. 
«CB5,CB6,CA1,CA2,CA3.CA4,CA5.R1,R2,R3,S0,S1.S2,S3.T0,T1.T2,T3) 

real*4 pn(3),pd(3),dn(3),dd(3),thetap(6),thetad(6) 
do 1 j=nden+l,nden+l+nnum 

pn(j-nden)=thet ap(J) 
1 continue 

do 2 j=l,nden 
pd(j)=thetap(j) 

2 continue 
if(nden.eq.1) call convertO(pd(l),pn(l),h,bl,al) 
if(nden.eq.2) then 
if(nnum.eq.O) call convertl(pd(l),pd(2),pn(l),h,bl,b2,al,a2) 
if(nnum.eq.l) call convert2(pd(l),pd(2),pn(l),pn(2),h,bl,b2,al, 

(8a2) 
endif 
if(nden.eq.3) then 
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if(nnum.eq.O) call convert3(pd(l),pd(2),pd(3),pn(l),h, 
®bl,b2,b3,al,a2,a3) 

if(imum.eq.l) call convert4(pd(l),pd(2),pd(3),pn(l),pn(2), 
@h,bl,b2,b3,al,a2,a3) 

if(imum.eq.2) call convert5(pd(l),pd(2),pd(3),pn(l),pn(2), 
®pn(3),h,bl,b2,b3,al,a2,a3) 

endif 
do 4 j=ndden+l,ndden+l+ndnum 
dn(j-ndden)=thetad(j) 
continue 
do 5 j=l,ndden 
dd(j)=thetad(j) 
continue 
if(ndden.eq.l) call convertO(dd(l),dn(l),h,bdl,adl) 
if(ndden.eq.2) then 
if(ndnum.eq.O) call convertl(dd(l),dd(2),dn(l),h,bdl,bd2,adl 

@,ad2) 
if(ndnum.eq.l) call convert2(dd(l),dd(2),dn(l),dn(2),h,bdl, 

Qbd2,adl,ad2) 
endif 
if(ndden.eq.3) then 
if(ndnum.eq.O) call convert3(dd(l),dd(2),dd(3),dn(l),h, 

®bdl,bd2,bd3,adl,ad2,ad3) 
if(ndnum.eq.l) call convert4(dd(l),dd(2),dd(3),dn(l),dn(2), 

@h,bdl,bd2,bd3,adl,ad2,ad3) 
if(ndnum.eq.2) call convert5(dd(l),dd(2),dd(3),dn(l),dn(2), 

ffldn(3),h,bdl,bd2,bd3,adl,ad2,ad3) 
endif 
write(*,*) 'Do you want integral action in controller' 
write(*,*) ' l=yes 2=no' 
read(*,») int 
write(*,*) 'Do you want to ceincel process zeros' 
write(*,*) ' l=yes 2=no' 
read(*,*) ipz 
tau=exp("h/O.30) 
pl=-2.0*exp(-0.85*6.0*h)*cos(6.0*h*sqrt(l.0-0.85*0.85)) 
p2=exp(-2.0*0.85*6*h) 
if(nden.eq.l) then 
if(int.eq.l) call controlli(bl,al,tau,rl,sO,sl,tO,tl) 
if(int.eq.2) call controll(bl,al,tau,sO.tO) 
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endif 
if(nden.eq.2) then 
if(int.eq.l) then 
if(ipz.eq.l) call control2ic(bl,b2,al,a2,pl,p2,tau,rl,r2, 

®sO,sl,s2,tO,tl,t2) 
if(ipz.eq.2) call control2i(bl,b2,al,a2,pl,p2,tau,rl,r2, 

®sO,sl,s2,tO,tl ,t2) 
endif 
if(int.eq.2) then 
if(ipz.eq.l) call control2c(bl,b2,al,a2,pl,p2,rl,sO,sl,tO,tl) 
if(ipz.eq.2) call control2(bl,b2,al,a2,pl,p2,rl,sO,si,tO,tl) 
endif 
endif 
if(nden.eq.3) then 
if(int.eq.l) then 
if(ipz.eq.l) call control3ic(bl,b2,b3,al,a2,a3,pl,p2,tau,rl, 

®r2,r3,s0,sl,s2,s3,t0,tl,t2,t3) 
if(ipz.eq.2) call control3i(bl,b2,b3,al,a2,a3,pl,p2,tau, 

®rl,r2,r3,sO,sl,s2,s3,tO,tl,t2,t3) 
endif 
if (int. eq. 2) then 
if(ipz.eq.l) call control3c(bl,b2,b3,al,a2,a3,pl,p2,tau 

@,rl,r2,sO,sl,s2,tO,tl,t2) 
if(ipz.eq.2) call control3(bl,b2,b3,al,a2,a3,pl,p2 

®,rl,r2,sO,sl,s2,tO,tl,t2) 
endif 
endif 
call feedcom(nnum,nden,ndnum,ndden,pn(1),pn(2),pn(3),pd(l), 

@pd(2),pd(3),dn(l),dn(2),dn(3),dd(l),dd(2),dd(3),bl.b2.b3.al.a2. 
®a3 ,bdl ,bd2,bd3,adl,ad2,ad3,h,ncn,ncd,cbl,cb2,cb3,cb4,cb5,cb6, 
®cal,ca2,ca3,ca4,ca5) 

return 
end 

subroutine controHi(bl,al,a,rl,sO,sl,tO,tl) 
s0=(1.0-a-al)/bl 
sl=al/bl 
rl=-l.0 
tO=(l.O-a)/bl 
tl=0.0 
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return 
end 

subroutine controll(bl,al,a,sO,tO) 
sO=(-a-al)/bl 
tO=(l.0-a)/bl 
return 
end 

subroutine control2i(bl,b2,al,a2,pl,p2,a,rl,r2,sO,si,s2,tO, 
atl,t2) 

rl=(b2*(al-a2+6.0*a**2-b2/bl*(-4.0*a+l.0-al))-bl*(a2-4.0*a**3 
@-bl/b2*a**4))/(b2*(al-1.0-b2/bl)-bl*(a2-al+bl»a2/b2)) 

sO=(l.0-al-rl-4.0*a)/bl 
sl=(a2-(a2-al+bl*a2/b2)•rl-4.0*a**3-bl/b2*a**4)/b2 
s2=(a**4+a2*rl)/b2 
t0=(1.0-a)**2/(bl+b2) 
tl=-2*a*tO 
t2=tO*a*a 
r2=-rl 
rl=rl-l.0 
return 
end 

subroutine control2ic(bl,b2,al,a2,pl,p2,a,rl,r2,sO,sl,s2, 
@tO,tl,t2) 

s0=(-3.0*a+1.0-al)/bl 
sl=(3.0*a*a+al-a2) /bl 
s2=(-a**3+a2)/bl 
rl=b2/bl-l.0 
r2=-b2/bl 
tO=(l-a)**2/bl 
tl=-a*tO 
t2=0.0 
return 
end 

subroutine control2(bl,b2,al,a2,pl,p2,rl,sO,si,tO,tl) 
rl=(p2-a2+(al-pl)*b2/bl)/(al-bl*a2/b2-b2/bl) 
sO=(pl-rl-al)/bl 
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sl=-a2*rl/b2 
t0=(1.0+pl+p2)/(bl+b2) 
t1=0.0 

return 
end 

subroutine control2c(bl,b2,al,a2,pl,p2,rl,sO,sl,tO,tl) 
rl=b2/bl 
sO=(pl-al)/bl 
sl=(p2-a2)/bl 
tO=(l.0+pl+p2)/bl 
tl=0.0 
return 
end 

subrout ine control3i(bl,b2,b3,al,a2,a3,ppl,pp2,a,rl,r2,r3, 
(Bs0,sl,s2,s3,t0,tl,t2,t3) 

b=0.0 
del=0.0 

1 b=b+del 
del=0.01 
ql=al-1.0-b2/bl-bl/b3*(a3-a2+b2*a3/b3) 
q2=a2-al-b3/bl-b2/bl*(al-1.0-b2/bl)+bl*a3/b3 
q3=-b**3-9.0*a*b*b-9.0*b*a*a-a**3 

<5+a2-a3-b3/bl* (-3. 0*b-3. 0*a+l. 0-al) -b2/bl* (3. 0*b*b+9. 0*a*b+ 
@3.0*a*a+al-
@a2-b2/bl*(-3.0*b-3.0*a+l.0-al)) +bl/b3* 
<3(3.0*a*a*b**3+3.0*b*b*a**3+b2*a**3*b**3/b3) 

q4=a2-al+bl*a3/b3-b2/b3*(a3-a2+b2*a3/b3)-b3/bl 
q5=a3-a2+b2*a3/b3-b3/bl*(al-l.0-b2/bl) 
q6=3.0*a*b**3+9.0*a*a*b*b+3.0*a**3*b 

@+a3-bl*a**3*b**3/b3+b2/b3* 
<3 (3. 0*a*a*b**3+3. 0*b*b*a**3+b2*a**3*b**3/b3) + 
Qb3/bl*(a2-al-3.0*b*b-9.0*a*b-3.0*a*a+b2/bl*(l.O-al-3.0*a-3.0*b)) 

rr2=(q3*q5-q6*q2)/(ql*q5-q4*q2) 
rrl=(q3-ql*rr2)/q2 
s0=(-3.0*a-3.0*b-rrl+1.0-al)/bl 
sl=(3.0*b*b+9.0*a*b+3.0*a*a 

@-rr2-(al-1.0-b2/bl)*rrl-(a2-al+b2/bl*(-3.0*a-3.0*b+l.0-
@al)))/bl 
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s2=(-3.0*a*a*b**3-3.0*b*b*a**3 
(5+rrl*a3-rr2*(a3-a2+b2*a3/b3)-b2*a**3*b**3/b3)/b3 

s3=(a**3*b**3+rr2*a3)/b3 
tO=(1.0-a)**3/(bl+b2+b3) 
tl=-3.0*b*t0 
t2=3.0*b*b*t0 
t3=-b**3*tO 
rl=rrl-1.0 
r2=rr2-rrl 
r3=-rr2 
call roots(rl,r2,r3,pi,p2,p3) 
if(pi.It.-1.0) go to 1 
if(pi.gt.1.0) go to 1 
Al=P2**2-4.0»P3 

IF(AI.GE.0.0) THEN 
ROOTl=-0.5*P2-0.5*SqRT(AI) 
ROOT2=-0.5*P2+0.5*SQRT(AI) 
if(ROOTl.lt.-1.0) go to 1 
if(ROOTl.gt.1.0) go to 1 
if(R00T2.lt.-1.0) go to 1 
if(ROOT2.gt.l.O) go to 1 
END IF 
IF(AI.LT.0.0) THEN 
ROOTl=SqRT((0.5*P2)**2-0.25*AI) 
if(ROOTl.gt.1.0) go to 1 
ENDIF 
return 
end 

subroutine control3ic(bl,b2,b3,al,a2,a3,pl,p2,a,rl,r2,r3, 
®s0,sl ,s2,s3,t0,tl,t2,t3) 

rl=b2/bl-l.0 
r2=b3/bl-b2/bl 
r3=-b3/bl 
s0=(-4.0*a-al+l.0)/bi 
sl=(6.0*a*a+al-a2)/bl 
s2=(-4.0*a**3+a2-a3)/bl 
s3=(a**4+a3)/bl 
t0=(1.0-a)**3/bl 
tl=-a*t0 
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t2=0.0 
t3=0.0 
return 
end 

subroutine controls(bl,b2,b3,al,a2,a3,pi,p2,rl,r2,sO,si,s2, 
®tO,tl,t2) 

ql=-a3-b3/bl*(pl-al)-(al-bl*a3/b3+b2*b2*a3/(b3**2)-b2*a2/b3)* 
a(p2-a2-b2/bl*(pl-al))/(1.0+bl*b2*a3/(b3*b3)-bl*a2/b3) 

q2=a2-b2*a3/b3-b3/bl-(al-bl*a3/b3+b2*b2*a3/(b3*b3)-b2*a2/b3)* 
@(al-bl*a3/b3-b2/bl)/(l.0+bl*b2*a3/(b3*b3)-bl*a2/b3) 

rl=ql/q2 
r2=(p2-a2-b2/bl*(pl-al)-rl*(al-bl*a3/b3-b2/bl))/(I.0 

@+bl*b2*a3/(b3*b3)-bl*a2/b3) 
sO=(pl-rl-al)/bl 
sl=(b2*aS/b3*r2-a2*r2-a3*rl)/b3 
s2=-a3*r2/b3 
tO=(l.0+pl+p2)/(bl+b2+b3) 
tl=0.0 
t2=0.0 
return 
end 

subrout ine controlSc(bl,b2,b3,al,a2,aS,pi,p2,a,r1,r2,sO,s1,s2, 
@tO,tl,t2) 

rl=b2/bl 
r2=b3/bl 
sO=(pl-a-al)/bl 
sl=(p2-a*pl-a2)/bl 
s2=(-a*p2-a3)/bl 
tO=(1.0-a)*(1.0+pl+p2)/bl 
tl=0.0 
t2=0.0 
return 
end 

subroutine feedcom(nnuin,nden,ndnum,ndden,pnl,pn2,pn3,pdl,pd2, 
apdS,dnl,dn2,dnS,ddl,dd2,ddS,bl,b2,bS,al,a2,aS,bdl,bd2,bdS,adl, 
aad2,ad3,h,ncn,ncd,cbl,cb2,cb3,cb4,cb5,cb6,cal,ca2,ca3,ca4,ca5) 

if(nden.eq.2) go to 2 
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if(nden.eq.S) go to 3 

if(nden.eq.1) then 
if(ndden.eq.l) then 
cbl=bdl/bl 
cb2=bdl*al/bl 
cal=adl 
ncn=l 
ncd=l 
endif 
if(ndden.eq.2) then 
cbl=bdl/bl 
cb2=bdl/bl*(bd2/bdl+al) 
cb3=bd2*al/bl 
cal=adl 
ca2=ad2 
ncn=2 
ncd=2 
endif 
if(ndden.eq.3) then 
cbl=bdl/bl 
cb2=bdl/bl*(bd2/bdl+al) 
cb3=bdl/bl*(bd3/bdl+al*bd2/bdl) 
cb4=al*bd3/bl 
cal=adl 
ca2=ad2 
ca3=ad3 
ncn=3 
ncd=3 
endif 
endif 
go to 1 

2 if(ndden.eq.2) go to 4 
if(ndden.eq.3) go to 5 
zero=-b2/bl 
if(zero.It.-0.9) zero=2.0 
if(zero.le.1.0) then 
cbl=bdl/bl 
cb2=bdl*al/bl 
cb3=bdl*a2/bl 
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cal=adl+b2/bl 
ca2=adl*b2/bl 
ncn=2 
ncd=2 
else 
if (nnum.eq. 1) then 
tal=pdl+dn2/dnl 
ta2=pdl*dn2/dnl 
tbl=ddl-(pdl+dn2/dnl) 
tb2=dd2-pdl*dn2/dnl 
call convert2(tal,ta2,tbl,tb2,h,bel,bc,acl,ac2) 
cbl=pnl/dnl 
cb2=pnl/dnl*(acl+bcl) 
cb3=pnl/dnl*(ac2+bc2) 
cal=acl 
ca2=ac2 
ncn=2 
ncd=2 
endif 
if (nnum.eq. 0) then 
tbl=ddl-50.0-pdl 
tb2=dd2-50.0*pdl 
tal=50.0+pdl 
ta2=50.0*pdl 
call convert2(tal,ta2,tbl,tb2,h,bcl,bc2,acl,ac2) 
cbl=50.0*pnl/dnl 
cb2=50.0*pnl/dnl*(acl+bcl) 
cb3=50.0*pnl/dnl*(ac2+bc2) 
cal=acl 
ca2=ac2 
ncn=2 
ncd=2 
endif 
endif 
go to 1 
continue 
nden=2 ndden=2 
zero=-b2/bl 
if(zero.It.-0.9) zero=2.0 
if(zero.le.1.0) then 
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cbl=bdl/bl 
cb2=(bdl*al+bd2)/bl 
cb3=(bdl*a2+bd2*al)/bl 
cb4=bd2*a2/bl 
cal=b2/bl+adl 
ca2=ad2+adl*b2/bl 
ca3=ad2*b2/bl 
ncn=3 
ncd=3 
else 
if(imum.eq.O) then 
if(ndnum.eq.O) then 
tbl=pdl-ddl 
tb2=pd2-dd2 
tal=ddl 
ta2=dd2 
call convert2(tal,ta2,tbl,tb2,h,bcl,bc2,acl,ac2) 
cbl=dnl/pnl 
cb2=dnl/pnl*(ac1+bc1) 
cb3=dnl/pnl*(ac2+bc2) 
cal=acl 
ca2=ac2 
ncn=2 
ncd=2 
endif 
if(ndnum.eq.l) then 
tal=50.0+ddl 
ta2=50.0*ddl+dd2 
ta3=50.0*dd2 
tbl=dn2/dnl+pdl-50.0-ddl 
tb2=pd2+pdl*dn2/dnl-50.0*ddl-dd2 
tb3=dn2*pd2/dnl-50.0*dd2 
call convert5(tal,ta2,ta3,tbl,tb2,tb3,h,bcl,bc2,bc3,acl,ac2, 

(9ac3) 
cal=acl 
ca2=ac2 
ca3=ac3 
cbl=50.0*dnl/pnl 
cb2=50.0*dnl/pnl*(acl+bcl) 
cb3=50.0*dnl/pnl*(ac2+bc2) 
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cb4=50.0*dnl/pnl*(ac3+bc3) 
ncn=3 
ncd=3 
endif 
endif 
if(imum.eq.l) then 
if(ndnum.eq.O) then 
t a1=dd1+pn2/pn1 
ta2=ddl*pn2/pnl+dd2 
ta3=dd2*pn2/pnl 
tbl=dnl/pnl 
tb2=pdl*dnl/pnl 
tb3=pd2*dnl/pnl 
call converts(tal,ta2,ta3,tbl,tb2,tb3,h,cbl,cb2,cb3,cal,ca2, 

®ca3) 
ncn=2 
ncd=3 
endif 
if(ndniim.eq.l) then 
tal=ddl+pn2/pnl 
ta2=ddl*pn2/pnl+dd2 
ta3=dd2*pn2/pnl 
tbl=pdl+dn2/dnl-tal 
tb2=pd2+dn2*pdl/dnl-ta2 
tb3=dn2*pd2/dnl-ta3 
call convert5(tal,ta2,ta3,tbl,tb2,tb3,h,bel,bc2,bc3,acl,ac2, 

@ac3) 

cal=acl 
ca2=ac2 
ca3=ac3 
cbl=dnl/pnl , 
cb2=dnl/pnl*(acl+bcl) 
cb3=DNl/pnl*(ac2+bc2) 
cb4=dnl/pnl*(ac3+bc3) 
ncn=3 
ncd=3 
endif 
endif 
endif 



www.manaraa.com

183 

go to 1 
5 continue 

zero=-b2/bl 
if(zero.It.-0.9) zero=2.0 
if(zero.le.1.0) then 
cal=b2/bl+adl 
ca2=adl*b2/bl+ad2 
c a3=ad3+ad2 *b 2 /b 1 
ca4=b2*ad3/bl 
cbl=bdl/bl 
cb2=(bd2+al*bdl)/bl 
cb3=(bd3+al*bd2+a2*bdl)/bl 
cb4=(al*bd3+a2*bd2)/bl 
cb5=a2*bd3/bl 
ncn=4 
ncd=4 
else 
if(nnvim.eq.O) then 
if(ndnum.eq.O) then 
tal=ddl 
ta2=dd2 
ta3=dd3 
tbl=dnl/pnl 
tb2=dnl*pdl/pnl 
tb3=dnl*pd2/pnl 
call convert5(tal,ta2,ta3,tbl,tb2,tb3,h,cbl,cb2,cb3,cal, 

®ca2,ca3) 
ncn=2 
ncd=3 
endif 
if(ndnum.eq.l) then 
tal=ddl 
ta2=dd2 
ta3=dd3 
tbl=dn2/dnl+pdl-t al 
tb2=pd2+dn2*pdl/dnl-ta2 
tb3=dn2*pd2/dnl-ta3 
call convert5(tal,ta2,ta3,tbl,tb2,tb3,h,bel,bc2,bc3,acl,ac2, 

®ac3) 
cal=acl 
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ca2=ac2 

ca3=ac3 

cbl=dnl/pnl 

cb2=dnl/pnl*(acl+bcl) 

cb3=dnl/pnl*(ac2+bc2) 

cb4=dnl/pnl*(ac3+bc3) 

ncn=3 

ncd=3 

endif 

if (ndniun. eq, 2) then 

tal=50.0+ddl 

ta2=dd2+50.0*ddl 

ta3=dd3+50.0*dd2 

ta4=50.0*dd3 

tbl=50.0*dnl/pnl 

tb2=50.O/pnl*(dnl*pdl+dn2) 

tb3=50.O/pnl*(dnl*pd2+dn2*pdl+dn3) 

tb4=50.O/pnl*(dn2*pd2+dn3*pdl) 

tb5=50.O/pnl*(dn3*pd2) 

call tustin44(tal,ta2,ta3,ta4,tbl,tb2,tb3,tb4,tb5,h,cbl, 

(8cb2, cb3, cb4, cb5, cal, ca2, ca3, ca4) 

ncn=4 

ncd=4 

endif 

endif 

if(nnum.eq.l) then 

if (ndniun. eq.O) then 

tal=ddl+pn2/pnl 

ta2=ddl*pn2/pnl+dd2 

ta3=dd2*pn2/pn1+dd3 

t a4=dd3*pn2/pnl 

tbl=dnl/pnl 

tb2=dnl*pdl/pnl 

tb3=dnl*pd2/pnl 

call tustin24(tal,ta2,ta3,ta4,tbl,tb2,tb3,h,cbl,cb2,cb3,cb4, 

flcbS,cal,ca2,ca3,ca4) 

ncn=4 

ncd=4 

endif 

if(ndniun.eq.l) then 
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tal=ddl+pn2/pnl 

t a2=dd1*pn2/pnl+dd2 

ta3=dd2*pn2/pn1+dd3 

ta4=dd3*pn2/pnl 

tbl=dnl/pnl 

tb2=(dnl*pdl+dn2)/pnl 

tb3=(dnl*pd2+dn2*pdl)/pnl 

tb4=dn2*pd2/pnl 

call tustin34(tal,ta2,ta3,ta4,tbl,tb2,tb3,tb4,h,cbl,cb2,cb3, 

Scbd,cb5,cal,ca2,ca3,ca4) 

ncn=4 

ncd=4 

endif 

if(ndnuin.eq.2) then 

tal=ddl+pn2/pnl 

t a2=dd1*pn2/pn1+dd2 

t a3=dd2 *pn2/pnl+dd3 

ta4=dd3*pn2/pnl 

tbl=dnl/pnl 

tb2=(dnl*pdl+dn2)/pnl 

tb3=(dnl*pd2+dn2*pdl+dn3)/pnl 

tb4=(dn2*pd2+dn3*pdl)/pnl 

tb5=dn3*pd2/pnl 

call tustin44(tal,ta2,ta3,ta4,tbl,tb2,tb3,tb4,tb5,h,cbl,cb2, 

<5cb3, cb4, cb5, cal, ca2, ca3, ca4) 

ncn=4 

ncd=4 

endif 

endif 

endif 

go to 1 

continue 

ssl=b2/bl 

ss2=b3/bl 

if(abs(ssl*0.5).gt.1.0) go to 10 

ss3=ssl*ssl-4.0*ss2 

if(ss3.ge.0.0) rootl=-0.5*ssl+sqrt(ss3)*0.5 

if(ss3.ge.0.0) root2=-0.5*ssl-sqrt(ss3)»0.5 

if(ss3.le.0.0) rootl=sqrt((0.5*ssl)**2+(-ss3*0.5»0.5)) 

if(ss3.le.0.0) root2=sqrt((0.5*ssl)**2+(-ss3*0.5*0.5)) 
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if(abs(rootl).gt.1.0) go to 10 

if(abs(root2).gt.1.0) go to 10 

if(ndden.eq.l) then 

cbl=bdl/bl 

cb2=bdl*al/bl 

cb3=bdl*a2/bl 

cb4=bdl*a3/bl 

cal=b2/bl+adl 

ca2=b3/bl+adl*b2/bl 

ca3=adl*b3/bl 

ncn=3 

ncd=3 

endif 

if(ndden.eq.2) then 

cbl=bdl/bl 

cb2=(bdl*al+bd2)/bl 

cb3=(bdl»a2+bd2*al)/bl 

cb4=(bdl*a3+bd2*a2)/bl 

cb5=bd2*a3/bl 

cal=adl+b2/bl 

ca2=ad2+b3/bl+adl*b2/bl 

ca3=adl*b3/bl+ad2*b2/bl 

ca4=ad2*b3/bl 

ncn=4 

ncd=4 

endif 

if(ndden.eq.3) then 

cbl=bdl/bl 

cb2=(bdl*al+bd2)/bl 

Cb3=(bdl*a2+bd2*al+bd3)/bl 

cb4=(bdl*a3+bd2*a2+bd3*al)/bl 

Cb5=(bd2*a3+bd3*a2)/bl 

cb6=bd3*a3/bl 

cal=adl+b2/bl 

ca2=ad2+b2*adl/bl+b3/bl 

ca3=ad3+ad2*b2/bl+adl*b3/bl 

ca4=ad3*b2/bl+ad2*b3/bl 

ca5=ad3*b3/bl 

ncn=5 

ncd=5 
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endif 

go to 1 

continue 

if(ndden.eq.2) go to 6 

if(ndden.eq.3) go to 7 

if(nnum.eq.O) then 

tal=100.0+ddl 

ta2=100.0*ddl+2500.0 

ta3=2500.0*ddl 

tbl=pdl-tal 

tb2=pd2-ta2 

tb3=pd3-ta3 

call convert5(tal,ta2,ta3,tbl,tb2,tb3,h,bcl,bc2,bc3,acl, 

@ac2,ac3) 

cal=acl 

ca2=ac2 

ca3=ac3 

cbl=dnl*2500.0/pnl 

cb2=dnl*2500.0/pnl*(acl+bcl) 

cb3=dnl*2500.0/pnl*(ac2+bc2) 

cb4=dnl*2500.0/pnl*(ac3+bc3) 

ncn=3 

ncd=3 

endif 

if (nrium.eq. 1) then 

tal=50.0+ddl+pn2/pnl 

ta2=(50.0+ddl)»pn2/pnl+50*ddl 

ta3=50.0*ddl*pn2/pnl 

tbl=pdl-tal 

tb2=pd2-ta2 

tb3=pd3-ta3 

call convert5(tal,ta2,ta3,tbl,tb2,tb3,h,bcl,bc2,bc3, 

@acl,ac2,ac3) 

cal=acl 

ca2=ac2 

ca3=ac3 

cbl=50.0*dnl/pnl 

cb2=50.0*dnl/pnl*(acl+bcl) 

cb3=50.0*dnl/pnl*(ac2+bc2) 

cb4=50.0*dnl/pnl*(ac3+bc3) 
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ncn=3 

ncd=3 

endif 

if(imimi.eq.2) then 

tal=pn2/pnl+ddl 

ta2=ddl*pn2/pnl+pn3/pnl 

ta3=ddl*pn3/pnl 

tbl=pdl-tal 

tb2=pd2-ta2 

tb3=pd3-ta3 

call convert5(tal,ta2,ta3,tbl,tb2,tb3,h,be1,bc2,bc3, 

®acl,ac2,ac3) 

cal=acl 

ca2=ac2 

ca3=ac3 

cbl=dnl/pnl 

cb2=dnl/pnl*(acl+bcl) 

cb3=dnl/pnl*(ac2+bc2) 

cb4=dnl/pnl*(ac3+bc3) 

ncn=3 

ncd=3 

endif 

go to 1 

6 continue 

if(nnum.eq.O) then 

if(ndnum.eq.O) then 

tal=50.0+ddl 

ta2=dd2+50.0*ddl 

ta3=50.0*dd2 

tbl=pdl-tal 

tb2=pd2-ta2 

tb3=pd3-ta3 

call convert5(tal,ta2,ta3,tbl,tb2,tb3,h,bel,bc2,bc3, 

®acl,ac2,ac3) 

cal=acl 

ca2=ac2 

ca3=ac3 

cbl=50.0*dnl/pnl 

cb2=50.0*dnl/pnl*(acl+bcl) 
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cb3=50.0*dnl/pnl*(ac2+bc2) 

cb4=50.0*dnl/pnl*(ac3+bc3) 

ncn=3 

ncd=3 

endif 

if(ndnum.eq.l) then 

tal=ddl+100.0 

ta2=2500.0+ddl*100.0+dd2 

ta3=2500.0*ddl+100.0*dd2 

ta4=2500*dd2 

tbl=2500.0/pnl»dnl 

tb2=2500.0/pnl*(dnl*pdl+dn2) 

tb3=2500.0/pnl*(dnl*pd2+dn2*pdl) 

tb4=2500.0/pnl*(dnl*pd3+dn2*pd2) 

tb5=2500.0/pnl*dn2*pd3 

call tustin44(tal,ta2,ta3,ta4,tbl,tb2,tb3,tb4,tb5,h, 

@cbl,cb2,cb3,cb4,cb5,cal,ca2,ca3,ca4) 

ncn=4 

ncd=4 

endif 

endif 

if(imum.eq. 1) then 

if(ndnvun.eq.O) then 

tal=pn2/pnl+ddl 

ta2=pn2*ddl/pnl+dd2 

ta3=pn2*dd2/pnl 

tbl=pdl-tal 

tb2=pd2-ta2 

tb3=pd3-ta3 

call converts(tal,ta2,ta3,tbl,tb2,tb3,h,bcl,bc2,bc3, 

®acl,ac2,ac3) 

cal=acl 

ca2=ac2 

ca3=ac3 

cbl=dnl/pnl 

cb2=dnl/pnl*(acl+bcl) 

cb3=dnl/pnl*(ac2+bc2) 

cb4=dnl/pnl*(ac3+bc3) 

ncn=3 

ncd=3 
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endif 

if(ndnum.eq.l) then 

tal=ddl+50.0+pn2/pnl 

ta2=50.0*pn2/pnl+ddl*(50.0+pn2/pnl)+dd2 

ta3=ddl*50.0*pn2/pnl+dd2*(50.0+pn2/pnl) 

ta4=50.0»dd2*pn2/pnl 

tbl=50.0*dnl/pnl 

tb2=50.0/pnl*(dnl*pdl+dn2) 

tb3=50.0/pnl*(dnl*pd2+dn2*pdl) 

tb4=50.0/pnl*(dnl*pd3+dn2*pd2) 

tb5=50.0/pnl*dn2*pd3 

call tustin44(tal,ta2,ta3,ta4,tbl,tb2,tb3,tb4,tb5,h, 

Ocbl,cb2,cb3,cb4,cb5,cal,ca2,ca3,ca4) 

ncn=4 

ncd=4 

endif 

endif 

if(nnuni.eq.2) then 

if(ndnmn.eq.O) then 

tal=ddl+pn2/pnl 

t a2 =pn3/pn1+ddl*pn2/pnl+dd2 

ta3=ddl*pn3/pnl+dd2*pn2/pnl 

ta4=dd2*pn3/pnl 

tbl=dnl/pnl 

tb2=dnl*pdl/pnl 

tb3=dnl*pd2/pnl 

tb4=dnl*pd3/pnl 

call tustin34(tal,ta2,ta3,ta4,tbl,tb2,tb3,tb4,h,cbl,cb2, 

@cb3,cb4,cb5,cal,ca2,ca3,ca4) 

ncn=4 

ncd=4 

endif 

if(ndnum.eq.l) then 

tal=ddl+pn2/pnl 

t a2 =pn3/pnl+ddl*pn2/pnl+dd2 

t a3=ddl*pn3/pnl+dd2 *pn2/pn1 

ta4=dd2*pn3/pnl 

tbl=dnl/pnl 

tb2=(dnl*pdl+dn2)/pnl 

tb3=(dnl*pd2+dn2*pdl)/pnl 
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tb4=(dnl*pd3+dn2*pd2)/pnl 

tb5=dn2*pd3/pnl 

call tustin44(tal,ta2,ta3,ta4,tbl,tb2,tb3,tb4,tb5,h,cbl,cb2, 

@cb3,cb4,cb5,cal,ca2,ca3,ca4) 

ncn=4 

ncd=4 

endif 

endif 

go to 1 

continue 

nden=3 ndden=3 

nnum=0 

if(nnum.eq.1) go to 8 

if (imum.eq. 2) go to 9 

if(ndnum.eq.O) then 

tal=ddl 

ta2=dd2 

ta3=dd3 

tbl=pdl-tal 

tb2=pd2-ta2 

tb3=pd3-ta3 

call convert5(tal,ta2,ta3,tbl,tb2,tb3,h,bcl,bc2,bc3, 

@acl,ac2,ac3) 

cal=acl 

ca2=ac2 

ca3=ac3 

cbl=dnl/pnl 

cb2=dnl/pnl*(acl+bcl) 

cb3=dnl/pnl*(ac2+bc2) 

cb4=dnl/pnl*(ac3+bc3) 

NCN=3 

ncd=3 

endif 

if(ndnum.eq.l) then 

tal=50.0+ddl 

ta2=dd2+50.0*ddl 

ta3=dd3+50.0*dd2 

ta4=50.0*dd3 

tbl=50.0*dnl/pnl 

tb2=50.0/pnl*(dnl*pdl+dn2) 
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tb3=50.0/pnl*(dnl*pd2+dn2*pdl) 

tb4=50.0/pnl*(dnl*pd3+dn2*pd2) 

tb5=50.0*dn2*pd3/pnl 

call tustin44(tal,ta2,ta3,ta4,tbl,tb2,tb3,tb4,tb5,h,cbl,=b2, 

fflcbS,cb4,cb5,cal,ca2,ca3,ca4) 

ncn=4 

ncd=4 

endif 

if(ndmam.eq.2) then 

tal=ddl+100.0 

ta2=dd2+100.0*ddl+2500.0 

ta3=dd3+100.0*dd2+2500.0*ddl 

ta4=100.0*dd3+2500.0*dd2 

ta5=2500.0*dd3 

tbl=2500.0*dnl/pnl 

tb2=2500.0/pnl*(dnl*pdl+dn2) 

tb3=2500.0/pnl*(dnl*pd2+dn2*pdl+dn3) 

tb4=2500.0/pnl*(dnl*pd3+dn2*pd2+dn3*pdl) 

tb5=2500.0/pnl*(dn2»pd3+dn3*pd2) 

tb6=2500.0/pnl*(dn3*pd3) 

call tustin55(tal,ta2,ta3,ta4,ta5,tbl,tb2,tb3,tb4,tb5,tb6,h, 

Ocb1,cb2,cb3,cb4,cb5,cb6,cal,ca2,ca3,ca4,ca5) 

ncn=5 

ncd=5 

endif 

go to 1 

8 continue 

if(ndmm.eq.O) then 

tal=ddl+pn2/pnl 

ta2=ddl*pn2/pnl+dd2 

ta3=dd2*pn2/pnl+dd3 

ta4=dd3*pn2/pnl 

tbl=dnl/pnl 

tb2=dnl*pdl/pnl 

tb3=dnl*pd2/pnl 

tb4=dnl*pd3/pnl 

call tustin34(tal,ta2,ta3,ta4,tbl,tb2,tb3,tb4,h,cbl,cb2, 

flcb3,cb4,cb5,cal,ca2,ca3,ca4) 

ncn=4 
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ncd=4 

endif 

if(ndnum.eq.l) then 

tal=ddl+pn2/pnl 

ta2=ddl*pn2/pnl+dd2 

ta3=dd2*pn2/pnl+dd3 

ta4=dd3*pn2/pnl 

tbl=dnl/pnl 

tb2=(dnl*pdl+dn2)/pnl 

tb3=(dnl*pd2+dn2*pdl)/pnl 

tb4=(dnl*pd3+dn2*pd2)/pnl 

tb5=dn2*pd3/pnl 

call tustiii44(tal,ta2,ta3,ta4,tbl,tb2,tb3,tb4,tb5,h,cbl,cb2, 

OcbS,cb4,cb5,cal,ca2,ca3,ca4) 

ncn=4 

ncd=4 

endif 

if(ndnuin.eq.2) then 

tal=ddl+50.0+pn2/pnl 

ta2=50.0*pn2/pnl+ddl*(50.0+pn2/pnl)+dd2 

ta3=ddl*50.0*pn2/pnl+dd2*(50.0+pn2/pnl)+dd3 

ta4=dd2*50.0*pn2/pnl+dd3*(50.0+pn2/pnl) 

ta5=dd3*50.0*pn2/pnl 

tbl=50.0*dnl/pnl 

tb2=50.0/pnl*(dnl*pdl+dn2) 

tb3=50.0/pnl*(dnl*pd2+dn2*pdl+dn3) 

tb4=50.0/pnl*(dnl*pd3+dn2*pd2+dn3*pdl) 

tb5=50.0/pnl*(dn2*pd3+dn3*pd2) 

tb6=50.0*dn3*pd3/pnl 

call tustin55(tal,ta2,ta3,ta4,ta5,tbl,tb2,tb3,tb4,tbS,tb6,h, 

®cb1,cb2,cb3,cb4,cb5,cb6,cal,ca2,ca3,ca4,ca5) 

ncn=5 

ncd=5 

endif 

go to 1 

9 continue 

if(ndnum.eq.O) then 

tal=ddl+pn2/pnl 

t a2=pn2/pnl+ddl*pn2/pnl+dd2 

t a3=ddl*pn3/pnl+dd2 *pn2/pnl+dd3 
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ta4=dd2 *pn3/pnl+dd3*pn2/pnl 

ta5=dd3*pn3/pnl 

tbl=dnl/pnl 

tb2=dnl*pdl/pnl 

tb3=dnl*pd2/pnl 

tb4=dnl*pd3/pnl 

call tustin35(tal,ta2,ta3,ta4,ta5,tbl,tb2,tb3,tb4,h, 

flcbl,cb2,cb3,cb4,cb5,cb6,cal,ca2,ca3,ca4,ca5) 

ncn=5 

ncd=5 

endif 

if(ndnvmi.eq.l) then 

tal=ddl+pn2/pnl 

t a2=pn2/pnl+ddl*pn2/pnl+dd2 

ta3=ddl*pn3/pnl+dd2*pn2/pnl+dd3 

t a4=dd2 *pn3/pnl+dd3 *pn2/pn1 

ta5=dd3*pn3/pnl 

tbl=dnl/pnl 

tb2=(dnl»pdl+dn2)/pnl 

tb3=(dnl»pd2+dn2*pdl)/pnl 

tb4=(dnl*pd3+dn2*pd2)/pnl 

tb5=dn2*pd3/pnl 

call tustin45(tal,ta2,ta3,ta4,ta5,tbl,tb2,tb3,tb4,tb5,h,cbl, 

®cb2,cb3,cb4,cb5,cb6,cal,ca2,ca3,ca4,ca5) 

ncn=5 

ncd=5 

endif 

if(ndnuin.eq.2) then 

tal=ddl+pn2/pnl 

t a2=pn2/pnl+ddl*pn2/pnl+dd2 

t a3=ddl*pn3/pnl+dd2 *pn2/pnl+dd3 

ta4=dd2*pn3/pnl+dd3*pn2/pnl 

ta5=dd3*pn3/pnl 

tbl=l.0*dnl/pnl 

tb2=l.O/pnl»(dnl*pdl+dn2) 

tb3=l.0/pnl*(dnl*pd2+dn2*pdl+dn3) 

tb4=l.O/pnl*(dnl*pd3+dn2*pd2+dn3*pdl) 

tb5=l.O/pnl*(dn2*pd3+dn3*pd2) 

tb6=l.0*dn3*pd3/pnl 

call tustin55(tal,ta2,ta3,ta4,ta5,tbi,tb2,tb3,tb4,tb5, 
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<atb6,h, cbl, cb2, cb3, cb4, cb5, cb6, cal, ca2, caS, ca4, ca5) 

ncn=5 

ncd=5 

endif 

1 continue 

return 

end 

Subroutine tustin24(tal,ta2,ta3,ta4,tbl,tb2 

a,tb3,h,cbl,cb2,cb3,cb4,cb5,cal,ca2,ca3,ca4) 

r=2.0/h 

s=r**4+tal*r**3+ta2*r*r+ta3*r+ta4 

r2=r*r 

r3=r*r*r 

r4=r*r*r*r 

S=r4+tal*r3+ta2*r2+ta3*r+ta4 

cal=(-4.0*r4-2.0*tal*r3+2.0*ta3*r+4.0*ta4)/s 

ca2=(6.0*r4-2.0*ta2*r2+6.0*ta4)/s 

ca3=(-4.0*r4+2.0*tal*r3-2.0*ta3*r+4.0*ta4)/s 

Ca4=(r4-tal*r3+ta2*r2-ta3*r+ta4)/s 

cbl=(tbl*r2+tb2*r+tb3)/s 

cb2=(2.0*tb2*r+4.0*tb3)/s 

cb3=(-2.0*tbl*r2+6.0*tb3)/s 

cb4=(-2.0*tb2*r+4.0*tb3)/s 

cb5=(tbl*r2-tb2*r+tb3)/s 

return 

end 

subroutine tustin34(tal,ta2,ta3,ta4,tbl, 

0tb2,tb3,tb4,h,cbl,cb2,cb3,cb4,cb5,cal,ca2,ca3,ca4) 

r=2.0/h 

s=r**4+tal*r**3+ta2*r*r+ta3*r+ta4 

r2=r*r 

r3=r*r*r 

r4=r»r*r*r 

S=r4+tal*r3+ta2*r2+ta3*r+ta4 

cal=(-4.0*r4-2.0*tal*r3+2.0*ta3*r+4.0*ta4)/s 

ca2=(6.0*r4-2.0*ta2*r2+6.0*ta4)/s 

ca3=(-4.0*r4+2.0*tal*r3-2.0*ta3*r+4.0*ta4)/s 

ca4=(r4-tal*r3+ta2*r2-ta3*r+ta4)/s 
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cbl=(tbl*r3+tb2*r2+tb3*r+tb4)/s 

cb2=(-2.0*tbl*r3+2.0*tb3*r+4.0*tb4)/s 

cb3=(-2.0*tb2*r2+6.0*tb4)/s 

cb4=(2.0*tbl*r3-2.0*tb3*r+4.0*tb4)/s 

Cb5=(-tbl*r3+tb2*r2-tb3*r+tb4)/s 

return 

end 

subroutine tustin44(tal,ta2,ta3,ta4,tbl,tb2,tb3,tb4,tb5. 

Oh,cbl,cb2,cb3,cb4,cb5,cal,ca2,ca3,ca4) 

r=2.0/h 

s=r**4+tal*r**3+ta2*r*r+ta3*r+ta4 

r2=r*r 

r3=r*r*r 

r4=r*r*r*r 

S=r4+tal*r3+ta2*r2+ta3*r+ta4 

cal=(-4.0*r4-2.0*tal*r3+2.0*ta3*r+4.0*ta4)/s 

ca2=(6.0*r4-2.0*ta2*r2+6.0*ta4)/s 

ca3=(-4.0*r4+2.0*tal*r3-2.0*ta3*r+4.0*ta4)/s 

Ca4=(r4-tal*r3+ta2*r2-ta3*r+ta4)/s 

Cbl=(tbl*r4+tb2*r3+tb3*r2+tb4*r+tb5)/s 

cb2=(-4.0*tbl*r4-2*tb2*r3+2.0*tb4*r+4.0*tb5)/s 

cb3=(6.0*tbl*r4-2.0*tb3*r2+6.0*tb5)/s 

Cb4=(-4.0*tbl*r4+2.0*tb2*r3-2.0*tb4*r+4.0*tb5)/s 

Cb5=(tbl*r4-tb2*r3+tb3*r2-tb4*r+tb5)/s 

return 

end 

subrout ine tustin35(tal,ta2,ta3,ta4,ta5,tbl,tb2,tb3,tb4, 

Oh,cbl,cb2,cb3,cb4,cb5,cb6,cal,ca2,ca3,ca4,ca5) 

r=2.0/h 

r2=r*r 

r3=r*r*r 

r4=r*r*r*r 

r5=r*r*r*r*r 

S=r5+tal*r4+ta2*r3+ta3*r2+ta4*r+ta5 

cal=(-5.0*r5-3.0*r4*tal-r3*ta2+r2*ta3+3.0*r*ta4+5.0*ta5)/s 

ca2=(10.0*r5+2.0*r4*tal-2.0*r3*ta2-2.0*r2*ta3+2.0*r*ta4+ 

010.0*ta5)/s 

ca3=(-10.0*r5+2.0*r4*tal+2.0*r3*ta2-2.0*r2*ta3-2.0*r*ta4+ 
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@10.0*ta5)/s 

ca4=(5.0*r5-3.0*r4*tal+r3*ta2+r2*ta3-3.0*r*ta4+5.0*ta5)/s 

Ca5=(-r5+tal*r4-ta2*r3+ta3»r2-ta4*r+ta5)/s 

cbl=(tbl*r3+tb2*r2+tb3*r+tb4)/s 

Cb2=(-tbl*r3+tb2*r2+3.0*tb3*r+5.0*tb4)/s 
cb3=(-2.0*tbl*r3-2.0*tb2*r2+2.0*tb3*r+10.0*tb4)/s 

cb4=(2.0*tbl*r3-2.0*tb2*r2-2.0*tb3*r+10.0*tb4)/s 

Cb5=(tbl*r3+tb2*r2-3.0*tb3*r+5.0*tb4)/s 

Cb6=(-tbl*r3+tb2*r2-tb3*r+tb4)/s 

return 

end 

subroutine tustin45(tal,ta2,ta3,ta4,ta5,tbl,tb2,tb3,tb4, 

@tb5,h,cbl,cb2,cb3,cb4,cb5,cb6,cal,ca2,ca3,ca4,ca5) 

r=2.0/h 

r2=r*r 

r3=r*r*r 

r4=r*r*r*r 

r5=r*r*r*r*r 

S=r5+tal*r4+ta2*r3+ta3*r2+ta4*r+ta5 

cal=(-5.0*r5-3.0*r4*tal-r3*ta2+r2*ta3+3.0*r*ta4+5.0*ta5)/s 

ca2=(10.0*r5+2.0*r4*tal-2.0*r3*ta2-2.0*r2*ta3+2.0*r*ta4+ 

@10.0*ta5)/s 

ca3=(-10.0*r5+2.0*r4*tal+2.0*r3*ta2-2.0*r2*ta3-2.0*r*ta4+ 

(810.0*ta5)/s 

ca4=(5.0*r5-3.0*r4*tal+r3*ta2+r2*ta3-3.0*r*ta4+5.0*ta5)/s 

Ca5=(-r5+tal*r4-ta2*r3+ta3*r2-ta4*r+ta5)/s 

Cbl=(tbl*r4+tb2*r3+tb3*r2+tb4*r+tb5)/s 

cb2=(-3.0*tbl*r4-tb2*r3+tb3*r2+3.0*tb4*r+5.0*tb5)/s 

cb3=(2.0*tbl*r4-2.0*tb2*r3-2.0*tb3*r2+2.0*tb4*r+10.0*tb5)/s 

cb4=(2.0*tbl*r4+2.0*tb2*r3-2.0*tb3*r2-2.0*tb4*r+10.0*tb5)/s 

cb5=(-3.0*tbl*r4+tb2*r3+tb3*r2-3.0*tb4*r+5.0*tb5)/s 

cb6=(tbl*r4-tb2*r3+tb3*r2-tb4*r+tb5)/s 

return 

end 

subroutine tustin55(tal,ta2,ta3,ta4,ta5,tbl,tb2,tb3,tb4, 

(9tb5, tb6,h, cbl, cb2, cb3, cb4, cb5, cb6, cal, ca2, ca3, ca4, ca5 ) 

r=2.0/h 

r2=r*r 
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r3=r*r*r 

r4=r*r*r*r 

r5=r*r*r*r*r 

S=r5+tal#r4+ta2*r3+ta3*r2+ta4*r+ta5 

Cal=(-5.0*r5-3.0*r4*tal-r3*ta2+r2*ta3+3.0*r*ta4+5.0*ta5)/s 

ca2=(10.0*r5+2.0*r4*tal-2.0»r3*ta2-2.0*r2*ta3+2.0*r*ta4+ 

®10.0*ta5)/s 

Ca3=(-10.0*r5+2.0*r4*tal+2.0*r3*ta2-2.0*r2*ta3-2.0*r*ta4+ 

®10.0»ta5)/s 

ca4= (5. 0T5-3. 0*r4*tal+r3*ta2+r2*ta3-3. 0*r*ta4+5. 0*ta5) / s 

Ca5=(-r5+tal*r4-ta2*r3+ta3*r2-ta4*r+ta5)/s 

Cbl=(tbl#r5+tb2*r4+tb3*r3+tb4*r2+tb5*r+tb6)/s 

cb2=(-5.0*r5*tbl-3.0*r4*tb2-r3*tb3+r2*tb4+3.0*r*tb5+5.0»tb6)/s 

cb3=(10.0*r5*tbl+2.0*r4*tb2-2.0*r3*tb3-2.0*r2*tb4 

®+2.0*r*tb5+10.0*tb6)/s 

cb4=(-10.0*r5*tbl+2.0*r4*tb2+2.0*r3*tb3-2.0*r2*tb4 

ffl-2.0*r*tb5+10.0*tb6)/s 

cb5=(5.0*r5*tbl-3.0*r4*tb2+r3*tb3+r2*tb4-3.0»r*tb5+5.0*tb6)/s 

Cb6=(-r5*tbl+r4*tb2-r3*tb3+r2*tb4-r*tb5+tb6)/s 

return 

end 

C.2 Program Listing for Adaptive Regulator with Continuous 
Update of Process and Controller Parameters 

The computer program for the full adaptive regulator contains some of the 
subroutines same as given in the previous section, so they are not included 
here. These subroutines are: SUBROUTINE START, SUBROUTINE STOP, 
SUBROUTINE RUD, SUBROUTINE CONVERTI, and SUBROUTINE CON-
VERT2I. 

PROGRAM ENGINE 

implicit real*4 (a-h) 

implicit real*4 (o-z) 

INTEGER*2 ERSTAT,LCHAN.BOARD,COUNT.PCHAN,LCHANl 

INTEGER*2 CHA(0:3),PVOLT(3) 

INTEGER*2 IT1,IT2,IT3.IT4 

INTEGER*! CARR 
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INTEGER*2 lOUT.Il.ISTEP.ISS 

INTEGER*2 IMIN.IMAX 

real*4 LAM,theta(4) ,diag(4) ,ofdiag(6) ,FI(4) .laitimin 

CHARACTER*9 VVH.VVST.STO 

CHARACTER*9 FILEN,STEP,STEPP,STEPS,filel 

DIMENSION A(15),B(15),Y(15),T(15),CGN(15),C(15) 

DIMENSION Yl(15).DE(15),C0N1(15),DIS(15),DS(1200) 

DIMENSION SPEED(1201),SPREF(1200),T0RREF(1200),TR(1200) 

DIMENSION T0RQUE(12OO),TIME(1200),ER1(15),ER2(15),ER3(15) 

DIMENSION ER4(15),fO(15),f2(15) ,sil(15),si2(15),ril(15) 

dimension ri2(15),bb(15),us(15),ut(15),as(15),bt(15) 

DATA CARR /1*13/ 

write(»,*) 'input the data filename to store parameter vector' 

read(»,555) filel 

open(unit=32,file=filel,status='new') 

CHA(0)=3 

CHA(1)=0 

CHA(2)=1 

CHA(3)=2 

LCHAN=1 

LCHAN1=2 

B0ARD=1 

C0UNT=3 

PCHAN=0 

ERSTAT=0 

lammin=0.95 

sigma=0.5 

CALL INIT(ERSTAT) 

IF(ERSTAT.NE.O) GO TO 666 

CALL AIG820 (LCHAN,BOARD,CHA,COUNT,ERSTAT) 

CALL A0T820 (LCHANl.BOARD,PCHAN,ERSTAT) 

STEP=' + »  

STEPP=' -
J 

STO=' C ' 

WRITE(* *) > *************************************************** 

WRITE(* *) '* • 

WRITE(* *) » *  SPEED AND TORQUE CONTROL OF A DIESEL ENGINE * 

WRITE(* *) » *  * 

WRITE(* *) » *  SELECT ONE OF THE ITEMS BELOW: * 

WRITE(* *) » *  1)START-UP THE ENGINE/DYNO * 



www.manaraa.com

200 

50 

999 

997 

998 

(SPEED - 1200 RPM, TORQUE * 70 lbft2)* 

2)TRANSIENT ENGINE CYCLE * 

3)SHUT-DOWN THE ENGINE/DYNO * 

4)EXIT * 

WRITE(*,*) '* 

WRITE(*,*) '* 

WRITE(*,*) '* 

WRITE(*,*) '* 

WRITE(»,*) '* * 

WRITE(*,*) '*************************************************** 

READ(*,*) ISELE 

IF(ISELE.EQ.l) CALL START(ERCODE) 

IF(ISELE.Eq.2) GO TO 50 

IF(ISELE.EQ.3) CALL STOP 

IF(ISELE.Eq.4) GO TO 6 

IF(ERCODE.EQ.1.0) GO TO 6 

GO TO 100 

0PEN(UNIT=4,FILE='inputdoc',STATUS='OLD') 

DO 999 J=l,1199 

READ(4,*) SECT,SPREF(J),TORREF(J) 

continue 

CLOSE(UNIT=4) 

DO 998 J=l,1199 

SPREF(J)=9.0*SPREF(J)+1200.0 

IF(SPREF(J .LT 1400.0) TORREF(J) =T0RREF(J)*2.15 

IF(SPREF(J .LT 1400.0) GO TO 997 

IF(SPREF(J .LT 1700.0) TORREF(J) =TORREF(J)*2.05 

IF(SPREF(J .LT 1700.0) GO TO 997 

IF(SPREF(J .LT 1900.0) TORREF(J)-=T0RREF(J)*2.0 

IF(SPREF(J .LT 1900.0) GO TO 997 

IF(SPREF(J .LT 2100.0) TORREF(J)= =T0RREF(J)*1.9 

IF(SPREF(J .LT 2100.0) GO TO 997 

IF(SPREF(J .LT 2150.0) TORREF(J)= =T0RREF(J)*1.8 

IF(SPREF(J .LT 2150.0) GO TO 997 

IF(SPREF(J .LT 2175.0) TORREF(J)= =T0RREF(J)*1.7 

IF(SPREF(J .LT 2175.0) GO TO 997 

IF(SPREF(J .LT 2190.0) TORREF(J)= =T0RREF(J)*1.55 

IF(SPREF(J .LT 2190.0) GO TO 997 

IF(SPREF(J .LT 2200.0) TORREF(J): =TORREF(J)*1.40 

IF(SPREF(J .LT 2200.0) GO TO 997 

TORREF(J)=TORREF(J)*1.30 

IF(TORREF(J).LT.0.0) TORREF(J)=-20.0 

CONTINUE 

SPREF(1200)=SPREF(1199) 
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TORREF(1200)=TORREF(1199) 

TR(1)=T0RREF(1) 

TR(1200)=TORREF(1200) 

DO 994 J=2,1199 

TR(J)=TORREF(J) 

IF(SPREF(J+1).Eq.SPREF(J)) GO TO 994 

IF(TORREF(J).LT.0.0) GO TO 994 

TORREF(J)=TORREF(J)-0.2748081*(SPREF(J+1)-SPREF(J-1)) 

994 CONTINUE 

DO 996 J=l,1200 

996 DS(J)=SPREF(J)-SPREF(1) 

DO 60 1=1,4 

diag(i)=10.0**6 

theta(i)=0.0 

60 continue 

do 61 i=l,6 

ofdiag(i)=0.0 

61 continue 

N=4 

SIGMA=0.5 

LAM=0.9999 

H=0.2 

bf1=0.0198013267 

afl=-.980198673306755 

bsl=0.1973532271095920-3 

bs2=0.19473931170301e-3 

asl=-l.960397346613511 

as2=0.9607894391522323 

btl=0.1313492448140610-5 

bt2=0.5175787148481440-5 

bt3=0.1274672858403440-5 

atl=-2.940596019920266 

at2=2.88236831745697 

at3=-0.941764533584249 

al=-1.3509 

a2=0.4711 

bl=0.0879 

b2=0.0684 

cbl=0.06464/bl 

cb2=0.050272/bl 
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cal=b2/bl 

rl=-0.822 

r2=-0,178 

s0=4.271 

sl=-5.506 

s2=1.823 

t0=1.94 

tl=-1.744 

t2=0.3917 

DO 995 J=l,5 

ER2(J)=0.0 

ER3(J)=0.0 

ER4(J)=0.0 

T(J)=0.0 

Y1(J)=0.0 

CON(J)=0.0 

C(J)=0.0 

DE(J)=0.0 

DIS(J)=0.0 

B(J)=0.0 

ER1(J)=0.0 

A(J)=0.0 

f0(j)=0.0 

fl(j)=0.0 

f2(j)=0.0 

sil(j)=0.0 

si2(j)=0.0 

ril(j)=0.0 

ri2(j)=0.0 

ut(j)=0.0 

us(j)=0.0 

bb(j)=0.0 

995 C0N1(J)=0.0 

ISS=0 

IJ=0 

AVE=0.0 

WRITE(»,•) 'PRESS ANY NUMBER IF YOU ARE READY TO START' 

READ(*,*) GGG 

DO 31, J=l,10 
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CALL AING(LCHAN,PVOLT,ERSTAT) 

31 AVE=AVE+PV0LT(2) 

AVE=AVE/10.0 

AVE=10.0*AVE/4095.0-5.0 

AVE=48.43213»AVE+0.404608 

Y(1)=AVE 

Y(2)=AVE 

Y(3)=AVE 

Y(4)=AVE 

Y(5)=AVE 

CALL SETTIMCO,0,0,0) 

334 DO 1 J=l,1199 

DO 1 JJ=6,10 

do 2 kk=6,15 

CALL AING(LCHAN,PVOLT,ERSTAT) 

A(JJ)=PV0LT(1) 

B(JJ)=PV0LT(2) 

A(j j)=10.0*A(j j)/4095.0-5.0 

B(jj)=10.0*B(jj)/4095.0-5.0 

A(j j)=491.4704*A(jj)+8.6656 

B(j j)=48.43213*B(j j)+0.4046 

bb(kk)=b(jj)-ave 

C(JJ)=PV0LT(3) 

C(JJ)=10.0*C(JJ)/4095.0-5.0 

DE(JJ)=DS(J) 

if(jj.lt.8) de(jj)=ds(j-l) 

IF(C(JJ).GT.4.80) GO TO 11 

IF(C(JJ).LT.0.80) GO TO 11 

if(kk.eq.6) then 

if(j.gt.20) call design(theta,h,bl,b2, 

®al,a2,rl,r2,sO,sl,s2,t0,tl,t2,cbl,cb2,cal) 

as(jj)=a(jj) 

bt(jj)=b(jj) 

Yl(JJ)=-Al*Yl(JJ-l)-A2*Yl(JJ-2) 

1 +Bl*C0Nl(JJ-l)+B2*C0Nl(JJ-2) 

Y(JJ)=Y1(JJ)+AVE 

ERl(JJ)=B(JJ)-Y(JJ-2) 

ER2(JJ)=TORREF(J)-ERl(JJ) 

ER3(JJ)=S0/T0*Y(JJ)+Sl/T0*Y(JJ-l)+S2/T0*Y(JJ-2) 

1 -tl/t0*er3(jj-l)-t2/t0*er3(jj-2) 
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ER4(JJ)=ER2(JJ)-ER3(JJ) 

CONl(JJ)=-R1*C0W1(JJ-1)-R2»C0N1(JJ-2) 

1 +T0*ER4(JJ)+tl*er4(jj-l)+t2*er4(jj-2) 

DIS(JJ)=-CA1*DIS(JJ-1)+CB1*DE(JJ)+CB2*DE(JJ-1) 

if(abs(conl(jj)+dis(jj)-conl(jj-l)-dis(jj-l)).It.5.0) then 

conKj j)=conl(j j-1) 

dis(jj)=dis(jj-1) 

endif 

C0N(JJ)=C0N1(JJ)+DIS(JJ) 

ISTEP=CON(JJ) 

ISTEP=ISTEP-ISS 

IMAX=(C(JJ)-1.40)*490.2 

IMIN=(C(JJ)-4.00)*490.2 

IF(ISTEP.GT.IMAX) ISTEP=IMX 

IF(ISTEP.LT.IMIN) ISTEP=IMIN 

ISS=CON(jj) 

WRITE(STEPP(6:9).'(14.4)') ABS(ISTEP) 

WRITE(STEP(6:9)(14.4)') ISTEP 

0PEN(UNIT=9,FILE='COMl',FORM='BINARY') 

IF(ISTEP.GT.O) WRITE (9) STEP.CARR 

IF(ISTEP.LT.O) WRITE (9) STEPP.CARR 

IF(ISTEP.Eq.O) WRITE (9) STO.CARR 

CLOSE(UNIT=9) 

REFSP=245.0*SPREF(J)/2175.0 

REFSP=4095.0*REFSP/255.0 

IOUT=REFSP 

IF(JJ.EQ.8) CALL A0T(LCHAN1,lOUT.ERSTAT) 

IF(JJ.EQ.(10)) THEN 

SPEED(J)=As(8) 

T0RQUE(J)=Bt(8) 

TIME(J)=T(8) 

write(32,*) j,theta,con(jj),-de(jj) 

endif 

endif 

ut(kk)=con(jj*-2) 

us(kk)=-de(jj-2) 

f0(kk)=bfl*bb(kk-l)-afl*fO(kk-l) 

fl(kk)=bsl*bb(kk-l)+bs2*bb(kk-2)-asl*fl(kk-l)-as2*fl(kk-2) 

f 2(kk)=bt1*bb( kk 1)+bt 2 *bb(kk-2)+bt3*bb(kk-3)-atl*f2(kk-l) 

(5-at2*f 2(kk-2)-at3*f2(kk-3) 
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sil(kk)=bsl*us(kk-1)+bs2*us(kk-2)-asl^sil(kk-1)-as2*sil(kk-2) 

si2(kk)=btl*us(kk-1)+bt2*us(kk-2)+bt3*us(kk-3)-atl*si2(kk-1)-

Qat2»si2(kk-2)-at3*si2(kk-3) 

ril(kk)=bsl*ut(kk-l)+bs2*ut(kk-2)-asl*ril(kk-1)-as2*ril(kk-2) 

ri2(kk)=btl*ut(kk-1)+bt2*ut(kk-2)+bt3*ut(kk-3)-

Qatl*ri2(kk-1)-at2*ri2(kk-2)-at3*ri2(kk-3) 

ynew=f0(kk)-2.0*f1(kk)+f2(kk) 

fi(l)=f2(kk)-fl(kk) 

fi(2)=-f2(kk) 

fi(4)=si2(kk) 

fi(3)=ri2(kk) 

if (abs(u't(kk)+us(kk)) .lt.20.) go to 4 

if(bb(kk).lt.20.0) go to 4 

call forget(n,ynew,fi,theta,diag,ofdiag,sigma, 

Qlaitimin, lam) 

CALL Rud(n,ynew,fi,theta,diag,ofdiag,lam) 

4 do 5 ji=l,4 

if(theta(ji).lt.2.0) then 

theta(l)=3.76 

theta(2)=4.34 

theta(3)=5.55 

theta(4)=4.15 

endif 

if (theta(ji) .gt .7.0) then 

theta(l)=3.76 

theta(2)=4.34 

theta(3)=5.55 

theta(4)=4.15 

endif 

5 continue 

if((theta(l)/(2.0*sqrt(theta(2)))).It.0.7) then 

theta(l)=3.76 

theta(2)=4.34 

theta(3)=5.55 

theta(4)=4.15 

endif 

if((theta(l)/(2.0*sqrt(theta(2)))).gt.1.2) then 

theta(l)=3.76 

theta(2)=4.34 

theta(3)=5.55 
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th0ta(4)=4.15 

endif 

2 continue 

DO 981 JU=1,5 

f0(ju)=f0(ju+10) 

fl(ju)=fl(ju+10) 

f2(ju)=f2(ju+10) 

sil(ju)=sil(ju+10) 

si2(ju)=si2(ju+10) 

ril(ju)=ril(ju+10) 

ri2(ju)=ri2(ju+10) 

us(ju)=us(ju+10) 

981 ut(ju)=ut(ju+10) 

if(jj.0q.lO) then 
DO 3 JU=1,5 

Yl(JU)=Yl(JU+5) 

C0Nl(JU)=C0Nl(JU+5) 

Y(JU)=Y(JU+5) 

C(JU)=C(JU+5) 

DE(JU)=DE(JU+5) 

ER4(JU)=ER4(JU+5) 

ER2(JU)=ER2(JU+5) 

con(ju)=con(ju+5) 

ER3(JU)=ER3(JU+5) 

3 DIS(JU)=DIS(JU+5) 

endif 

ij=ij+l 

51 CALL GETTIM(ITl,iT2,IT3,IT4) 

T(JJ)=3600.0*ITl+60.0*IT2+1.0*IT3+0.01*IT4 

IF(T(JJ).LT.(0.2*IJ)) GO TO 51 

I CONTINUE 

OPEN(UNIT=9,FILE='COMl',FORM='BINARY') 

WRITE (9) STO.CARR 

CLOSE(UNIT=9) 

GO TO 89 

II OPEN(UNIT=9.FILE='COMl',FORM='BINARY') 

WRITE (9) STO.CARR 

CLOSE(UNIT=9) 

WRITEC*.*) 'LIMIT SWITCH OPERATION' 

36 CALL AING(LCHAN.PVOLT.ERSTAT) 
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WRITE(*,*) 'ACTUATOR POSITION:' 

ACTP0SI=10.0*PVOLT(3)/4095.0-5.0 

WRITE(*,•) ACTPOSI 

WRITE(*,*) 'DO YOU WANT TO GIVE A STEP INPUT TO THE ACTUATOR?' 

WRITEC*,*) ' SELECT 1:YES 2:N0' 

READ(*,*) II 

IF(I1.EQ.2) GO TO 100 

IF(Il.Eq.l) GO TO 35 

35 WRITE(*,*) 'INPUT COMMAND FOR ACTUATOR' 

READ(*,555) STEPS 

OPEN(UNIT=9.FILE='COMl',FORM='BINARY') 

WRITE (9) STEPS,CARR 

CLOSE(UNIT=9) 

GO TO 36 

89 WRITEC*,*) 'SELECT: 1)EXIT' 

WRITEC*,*) ' 2)TRANSIENT ENGINE CYCLE' 

WRITEC*,*) ' 3)CREATE AN OUTPUT FILE' 

WRITEC*,*) ' 4)SHUT-D0WN THE ENGINE/DYNO' 

READC*,*) Ml 

IFCMl.EQ.l) GO TO 6 

IFCM1.EQ.2) GO TO 50 

IF(M1.EQ.3) GO TO 88 

IF(Ml.Eq.4) CALL STOP 

GO TO 89 

GO TO 6 

88 WRITEC*,*) 'AN OUTPUT FILE NAME' 

READC*.555) FILEN 

555 FORMATCA) 

0PENCUNIT=1,FILE=FILEN) 

SPEEDCl201)=SPEEDCl200) 

DO 39, J=l,1199 

IFCSPREFCJ+1).EQ.SPREFCJ)) GO TO 39 

IFCTRCJ).LT.O.O) GO TO 39 

T0RQUE(J+l)=T0RQUECJ+l)+O.2748O81*CSPEEDCJ+2)-SPEEDCJ)) 

39 WRITECl.llO) TIMECJ+1),SPREFCJ) ,TRCJ).SPEEDCJ+1) ,T0RC)UECJ+1) 

110 F0RMATC1X,F12,5,1X,F12.5,1X,F12.5,1X,F12.5,1X,F12.5) 

CLOSECUNIT=1) 

GO TO 89 

666 WRITEC*,*) 'ERROR OCCURRED IN INITIALIZATION THE RTI-820' 
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6 continue 

close(unit=32) 

STOP 

end 

subroutine design(theta,h,bl,b2,al,a2,rl,r2, 

@sO,sl,s2,tO,tl,t2,cbl,cb2,cal) 

real*4 theta(4) 

call converti(thêta(1),theta(2),theta(3), 

@h,bl,b2,ai,a2) 

call converti(theta(1),theta(2),theta(4), 

(5h,bdl ,bd2,adl ,ad2) 

tau=exp(-h/0.25) 

ssl=b2/bl 

if(abs(ssl).gt.1.0) go to 1 

call control2i(bl,b2,al,a2,pl,p2,tau,rl, 

<8r2,sO,sl,s2,tO,ti,t2) 

cbl=bdl/bl 

cb2=bd2/bl 

cal=b2/bl 

go to 2 

1 al=-1.3509 

a2=0.4711 

bl=0.0879 

b2=0.0684 

cbl=0.06464/bl 

cb2=0.050272/bl 

cal=b2/bl 

rl=-0.822 

r2=-0.178 

s0=4.271 

sl=-5.506 

s2=1.823 

t0=1.94 

tl=-1.744 

t2=0.3917 

2 continue 

return 

end 
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subrout ine f orget(n,ynew,fi,thet a,diag,of diag,sigma, 

Olammin.lam) 

integer n,jf,jl,i,j,k 

real*4 ynew,fi(n),theta(n),diag(n),ofdiag(n*(n-l)/2) 

real*4 error,w,npar,tv(iO),lam,sigma,lammin 

error=ynew 

do 1 i=l,n 

error=error-fi(i)*theta(i) 

1 continue 

w=0.0 

do 2 i=l,n 

tv(i)=fi(i) 

k=i-l 

do 3 j=l,i-l 

tv(i)=tv(i)+ofdiag(k)*fi(j) 

k=k+n-j-l 

3 continue 

w=w+tv(i)*diag(i)*tv(i) 

2 continue 

npar=l.0-w-error**2/sigma 

lam=(npar+sqrt(npar**2+4.0*w))/2.0 

if(lam.lt.lammin) lam=lammin 

return 

end 
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